2.1K Views
April 15, 24
スライド概要
2024年4月10日(水)
講義動画: https://youtu.be/XbQqZtGvqOw
伊藤昌毅 東京大学 大学院情報理工学系研究科 附属ソーシャルICT研究センター 准教授。ITによる交通の高度化を研究しています。標準的なバス情報フォーマット広め隊/日本バス情報協会
東京大学 大学院情報理工学系研究科 創造情報学専攻 2024年度「交通情報学特論」 第1回 2023年4月11日 弥生キャンパス I-REF棟 Hilobby 交通情報学入門 東京大学 大学院情報理工学系研究科 附属ソーシャルICT研究センター 創造情報学専攻兼担 伊藤昌毅
伊藤 昌毅 • • • • • 東京大学 大学院情報理工学系研究科 附属ソーシャルICT研究センター 准教授 静岡大学 土木情報学研究所 客員教授 専門分野 – – ユビキタスコンピューティング 交通情報学 – – – – – – – – 静岡県掛川市出身 2002 慶應義塾大学 環境情報学部卒 2009 博士(政策・メディア) 指導教員: 慶應義塾大学 徳田英幸教授 2008-2010 慶應義塾大学大学院 政策・メディア研究科 特別研究助教 2010-2013 鳥取大学 大学院工学研究科 助教 2013-2019 東京大学 生産技術研究所 助教 2019-2021 東京大学 生産技術研究所 特任講師 2021-現在 現職 – 運行管理者(旅客) 経歴 資格 2
これまでの経歴と研究歴 2000 2008 徳田研究室 学生 2010 徳田研究室 特別研究助教 慶應義塾大学 大学院工学 研究科 助教 2013 2019 瀬崎研究室 助教 鳥取大学 2021 大口研究室 特任講師 SICT研究センター 准教授 東京大学 ユビキタスコンピューティング(IoT) 計算機やセンサの遍在環境 Human-Computer Interaction (HCI) ・UI/UX・社会におけるコンピュータの受容 公共交通のIT化・地域交通 空間情報・地図情報 環境センシング 交通計画学 人流センシング 交通工学 ITS・交通制御
2010年〜2013年 バスネット: 鳥取大学発 バス・鉄道乗換案内 の開発 • 年間4万人を超えるユニークユーザ • 年間30万件を超える検索数 • 総務大臣賞 産学官連携功労者表彰,平成21年 • 総務大臣表彰 U-Japan大賞 地域活性化部門賞, 平成20年 • ほか受賞多数
バスネット利用者の行動分析 • Webやアプリの利用データのビックデータ分析から、公共交通 への需要を明らかに 出発地設定 目的地 イオン鳥取北 (バス停) 鳥取駅 (バス停) 県庁日赤前 (バス停) イオン鳥取北 (バス停) 鳥取砂丘 (バス停) 500 450 400 350 300 250 利用数 順位 出発地 鳥取駅 1 (バス停) イオン鳥取北 2 (バス停) 鳥取駅 3 (バス停) 鳥商前 4 (バス停) 鳥取駅 5 (バス停) 目的地設定 200 150 100 50 0 0 2 4 6 8 10 12 14 16 時間帯 h 鳥取駅バス停 区間ごとの需要 地域別の需要分布 バス停ごとの乗降パターン 18 20 22 24
アクセスログ解析システムの開発 • 直感的な解析を実現するWebインタフェースの開発 – Hadoopを使った分散処理でデータ解析を高速に実現 – 総務省戦略的情報通信研究開発推進制度(SCOPE)地域ICT新興型研究開発に採 択
東京大学大学院情報理工学系研究科附属ソー シャルICT研究センター
知能社会国際卓越大学院プログラム(IIW) • 募集説明会 4月11日(木) 17:00〜 – 2023年10月及び2024年4月に修士1年に進学した学生
履修学生の確認 学生所属 1年 2年 博士 合計 総合文化研究科言語情報科学専攻 0 1 0 1 総合文化研究科広域科学専攻 0 1 0 1 工学系研究科社会基盤学専攻 9 1 0 10 工学系研究科航空宇宙工学専攻 1 1 0 2 工学系研究科電気系工学専攻 3 0 0 3 工学系研究科化学システム工学専攻 0 0 1 1 工学系研究科原子力国際専攻 1 0 0 1 薬学系研究科薬科学専攻 0 0 1 1 新領域創成科学研究科人間環境学専攻 1 1 0 2 情報理工学系研究科電子情報学専攻 0 1 0 1 情報理工学系研究科知能機械情報学専攻 1 1 0 2 情報理工学系研究科創造情報学専攻 3 1 2 6 学際情報学府学際情報学専攻 2 0 0 2 21 8 4 33 合計
モビリティは100年に一度の大変革の時代
ビジネス誌でも多くの特集 2018年3月5日号 2018年9月号 2019年4月29日号 2019年7月30日号
モビリティ革命の背景 • 情報技術の発達 – スマートフォン: 誰もが常時繋がる世界を達成 – IoT: 全てのモノ(車や電車、バス等も含む)も常時繋がる – AI・機械学習: 大量のデータに基づき人間以上の知的アウトプット • カーボンニュートラル – 温室効果ガスの排出量と吸収量を均衡 – 気候変動を抑制して持続可能な社会を作る
車両目線で次のモビリティを考えるなら CASE
CASE: 自動車産業が見据えている方向性 • C: Connected – 通信・ネットワーク化 • A: Autonomous – 自動運転 • S: Shared and Services – サービス化 • E: Electric – 電動化 • 2016年にダイムラーが提唱・一企業に留まらない自動車産業の方向性を示 すキーワードとなる https://www.daimler.com/innovation/case-2.html
TESLA • イーロンマスク氏による電気自動車ベン チャー企業 – 2003年創業 • 自動運転に対応したハードウェアを標準 装備 – カメラや超音波、レーダーなどで周辺を認識 – オートパイロット機能を提供 – 現在は完全な自動運転ではないが、将来は完全自 動運転に対応? – ソフトウェアアップデートで機能追加 • 利用者の運転行動を通してアルゴリズム を進化 • Webでカスタマイズ・オーダー https://ja.wikipedia.org/wiki/テスラ・モデル3
https://response.jp/article/2019/02/28/319596.html
• xx トヨタの求人広告が話題に(2017年) https://adgang.jp/2017/10/151302.html
A: Autonomous
自動運転は いつ実現するか?
• x http://www.mlit.go.jp/common/001226541.pdf
各社の実験も活発に • カリフォルニア州車両管 理局(DMV)が公開した 自律走行車の開発企業各 社による試験状況より • ウェイモ(Google)、 Uber、AppleなどIT企業 も実験中 https://wired.jp/2019/02/26/new-robo-car-report-card/
2020年!? • テスラは2020年に「完 全な自動運転」を実現 する – オートパイロット機能 – スマートサモン機能 https://wired.jp/2019/02/25/tesla-full-self-driving-promise/
CES 2019 トヨタ・リサーチ・インスティテュート (TRI)ギル・プラットCEOスピーチ • レベル5の自動運転とは、いつどこで どんな環境でも、ドライバーなしで自 動運転が可能なシステムと定義されま す。 • これはすばらしい目標ですし、私たち もいつかは達成できるかもしれません。 • しかしながら、こうした自動運転シス テムが抱える、技術的・社会学的な難 しさを甘く考えてはいけないと思って います。 2019年01月08日 https://global.toyota/jp/newsroom/corporate/26085185.html https://car.watch.impress.co.jp/img/car/docs/1161/181/html/001_o.jpg.html
• x 官民 ITS 構想・ロードマップ 2019 より
SDV: Software defined Vehicle
Software defined X • Software defined Network – サーバやラック、ケーブルで構成される ネットワークを仮想化、ソフトウェアに よる柔軟な設定や再構成などを可能に • クラウドコンピューティングを実 現する基礎技術 – Webブラウザによる操作だけで自分の サーバ・ネットワークなどを必要なだけ 構成可能
モビリティDX検討会 第3回SDV・データ連携WG 事務局資料 (経済産業省 製造産業局 自動車課 モビリティDX室 2024年3月8日) https://www.meti.go.jp/policy/mono_info_service/mono/automobile/jido_soko/20240308sdv3jimukyokushiryou.pdf
自動車産業の新しい局面に追いついていけてるのか? • ソフトウェアや自動運転、地図等の要素は増えているが、全体 像を把握して運用コンセプト(OpsCon/ConOps)をつくり、 そこから設計や検証・テストを含むプロセスを実行できる人材 がエンジニアやマネジメントの観点で不足している。 • 自動車業界も必死で、人材獲得に取り組んでいるが、全く思っ た通りに人材が揃わず非常に難しい。そのため、内部の人材を どのようにリストラクチャーすべきかとなっている。 • (前掲WG議事要旨より) – https://www.meti.go.jp/policy/mono_info_service/mono/automobile/jido _soko/2023_003SDV.html
今ある自動車がただ自動運転になる だけではない
City of Tomorrow with Autonomous Vehicles (Drive Sweden) • 自動運転によって街がどう変わるかというビジョン – 街の空間を車のための場所から人のための場所へ • • • • • • 道路標識が不要に 道路を効率よく使えるようになり歩道が広がる 駐車場を街の中心に作らなくてよい 駅に到着したときに待たずに出迎え 自動運転トラックの隊列走行で効率よく 計画的に積み荷を処理することで駐車場削減 https://www.youtube.com/watch?v=WmYsWYDQxuI
システムとして交通全般を捉え直し 現代の技術をベースにした組み合わせや都市 全体の最適化を考えるべき • これまでの自家用車、公共交通、自動車、電車などの区分を一 旦忘れる • 車両・インフラ・社会制度を一体化した仕組み作り • 制度を硬直化させない工夫が必要
UTMS (新交通管理システム) • 日本においては90年代から道路交通の高度化を目指した研究開 発が盛んに行われてきた 現場急行支援システム(FAST) https://utms.or.jp/japanese/
S: Shared and Services IT×交通の可能性が 世界中で試されている
Uber • 2010年 サンフランシス コで設立 • 2011年 NY、パリ進出 • 2013年 東京でタクシー 配車開始 • 2015年 CMUの研究者40 名を引き抜き • 2015年福岡市でライド シェア実証実験、国交省 が中止 • 2016年 トヨタと提携 • 2016年 京丹後市で「さ さえ合い交通」
Uber Pool (Uber Express Poolと統合) • 乗客が「歩いて」「待つ」ことでさらに効率的なライドシェア を実現 – 2017年11月〜 サンフランシスコで試験提供 – 2018年2月〜 正式提供 https://techcrunch.com/2018/02/21/uber-officially-launches-uber-express-pool-a-new-twist-on-shared-rides/
マイクロモビリティの急速な普及 • 電動キックボードとシェアサイクルをマイ クロモビリティと総称 – ドックレス(どこでも乗り捨てられる)が流行 • Bird、Jump (Uber)、Lyft、Lime、Skip、 Spin (Ford)などが全米の都市で競争
MaaS (Mobility as a Service)
MaaSとは? • ドア・ツー・ドアの移動に対し、 様々な移動手法・サービスを組み合わ せて1つの移動サービスとして捉えるものであり、ワンストップでシーム レスな移動が可能となる。 • 加えて、様々な移動手段・サービスの個々のサービス自体と価格を統合 して、 一つのサービスとしてプライシングすることにより、いわば「統 合一貫サービス」 を新たに生み出すものであり、価格面における利便性 の向上により利用者の移動行動に変化をもたらし、移動需要・交通流の マネジメント、さらには、供給の効率化も期待できる。 • 小売・飲食等の商業、宿泊・観光、物流などあらゆるサービス分野との 連携や、医療、福祉、教育、一般行政サービスとの連携により、移動手 段・サービスの高付加価値化、より一層の需要の拡大も期待できる。 (国交省 都市と地方の新たなモビリティサービス懇談会中間とりまとめより)
MaaSの背景: IT・スマホの普及・発展 • いつでもどこでも「その時・その場で・他に何も使わずに」解決す るのが当たり前に – – – – 知りたい→WebやSNS検索 届けたい→SNSでシェア 売りたい→カメラで撮ってメルカリに 行きたい→乗り換え案内やGoogle Maps • 利用者の「したい・欲しい」の種に気付かせ、阻害せずに具体的な 形に落とし込めるようにUI/UXが進化中 – 明確に「何をしたい」を持たなくても、アプリとの対話の中で欲求を形成・具現化
MaaS Global社による定義 • あらゆる種類の移動手段を単一の 直感的なモバイルアプリにまとめ ます。さまざまな事業者が提供す る移動の選択肢をシームレスに組 み合わせて、旅行計画から支払い まですべてを取り扱います。オン デマンドで旅行を購入する場合で も、手頃な価格の月額パッケージ をサブスクライブする場合でも、 MaaSは最善の方法であなたの移 動のニーズに応えます。
Whim by MaaS Global • • ヘルシンキ(フィンランド)でMaaSを実現 Whim というアプリを通して鉄道、バス、タ クシー、自転車などの組み合わせ検索や予約決 済を実現 https://whimapp.com
https://note.mu/kakudosuzuki/n/n01c8ab0f9b84 Whimの利用 • xx
Whimのプラン: 料金により交通行動を誘導
統合の度合いで4段階のレベルが提唱されている • xx http://www.tut.fi/verne/aineisto/ICoMaaS_Proceedings_S6.pdf
変身するLA マイカーなしでも移動に不自由なし モビリティー革命進行する米国 • 牧村和彦氏(計量計画研究所) による現地レポート • 米国にて、車社会から新しいモ ビリティサービスによるまちづ くりが始まっていることを報告 https://www.nikkei.com/article/DGXMZO33296960T20C18A7000000/
「全ての交通サービスが自分の ポケットの中にある」 という、 今までに感じたことのない 異次元の感覚
公共交通を活かしたまちづくりの成熟 • モータリゼーションが先行したヨーロッパにおいて、中心市街 地を公共交通によって活性化する施策が一般化 – 数十万人規模の都市でもトラムを整備、赤字前提の運営 • LRT導入、歩行者専用道路、トランジットモール… フランス オルレアン https://commons.wikimedia.org/wiki/File:Rue_Jeanne_dArc_Tramw ay_Orleans.jpg フランス ストラスブール http://uemuraakifumi.com/machi/858 ドイツ カールスルーエ https://commons.wikimedia.org/wiki/File:Heilbronn_Bah nhofsvorplatz_Stadtbahn01_2002-09-08.jpg
日本やアメリカでも続く動き • 世界的にも自家用車から脱却し公共交通を中心としたまちづく りがすすめられている アメリカ ポートランド http://kcube.zouri.jp/potland-notoshikoutuseisaku.html 台湾 高雄 https://commons.wikimedia.org/wiki/File:Kaohsiung_LRT_Circu lar_Line_at_Gate_of_Kaohsiung_Port_20180621.jpg 富山市 http://www.toyamashi-kankoukyoukai.jp/?tid=100846
ヨーロッパなどでは運輸連合を形成 • 複数の交通事業者を一体運用し統一的な公共交通サービスを実現する組織 – 交通事業者、自治体などが主導し結成される • 公費を投入しての運営が前提、運賃収入は半分以下 • ドイツ、フランスなどで導入が進む – 1965年にドイツ ハンブルグで始まる • 運輸連合の役割(例) – – – – – – 統一的な運賃システムの構築と販売のマネジメント 事業者間での運賃調整 地方自治体や事業者との契約に関するマネジメント ローカル線の維持管理と品質管理 旅客輸送の計画策定 マーケティングと乗客への情報提供 https://www.itej.or.jp/assets/seika/jijyou/201209_00.pdf 運輸連合の概要と日本への示唆 −ドイツ・ベルリンを例に−(渡邉亮) 参照
モビリティ革命の地域社会へのインパクト • 移動手段・くらしの足をどう確保するか – 多くの人にとっては、モータリゼーションで移動が手軽に・便利に – 過疎化・少子高齢化などの状況の中で、新しいモビリティで地域の足を再構築で きるか? • 地域の産業・経済基盤をどう成立させるか – 地域の雇用を支える企業・事業は今後どうなるのか • 裾野の広い自動車関連産業 • 道路などのインフラ整備 – 第一次、第二次産業からソフトウェア・サービスへ
交通情報学特論
交通データ触れたことありますか? • Excelで、GISで、SQLで、自作プログラムで、交通データを操れます か? – GTFS、GPSのプローブデータ、交通センサスデータなど • 発注者・行政職員が分かっていないことをいいことに、技術の研鑽を 怠っていませんか? • 「そういうのはできる人にやらせて、自分はもっと高度で戦略的な意志 決定を・・・」とか言ってませんか? • 交通を学ぶ学生を、交通ビッグデータにも触れないまま卒業させてしま うのはまずい
この講義の狙い・位置づけ • 本講義では、情報技術との融合によって高度化が進んでいる交通関 連技術について概観し、交通データ分析や交通シミュレーション、 交通案内サービス構築に必要な技術を身に付ける。 • 道路交通を中心に安全で円滑な交通を目指す交通工学、需要に応じ た最適な交通をデザインする交通計画学などの分野は、大量のデー タを取り扱う現代の情報技術と融合することで、より利便性が高く 効率がいい交通インフラや交通サービスの構築を可能にしている。 • この講義では、交通データの収集、可視化、分析、社会システムへ の応用について、最新の事例や研究成果を紹介するとともに、実際 の交通データに触れながらプログラミングやデータ分析ツールの利 用技術を身に付ける。
交通の課題を論じる講義は充実 • 例:東京大学公共政策大学院 TTPU – – – – 国際交通政策 地域交通政策研究 観光政策概論 観光地域政策 • 研究テーマとして交通の課題を扱う 機会もあるのでは?
課題に対処する方法を持ちたい • 「AIによって一気に最適化」とはならない • まずは現状の把握 – そもそもデータが無かったり、断片的だったり、いろいろな事情で入手出来ない ことも多い – データがあっても、その扱いが難しい • 仮説の提示と検証 – 課題に対応するためには、原因や解決策などについて仮説を立てて現状に当ては め、正しそうな仮説を選び磨いていく
講義の特徴 • 交通の考え方や理論よりIT・データの技術にフォーカス – 理論的な説明や深い考えを説明する講義は他にもあるので・・・ • 実際にデータやツールを配布し、手を動かしながら技術を身に 付ける – 学生ひとりひとりがQGIS、PostgreSQL、大都市交通センサスデータなどを自ら のPCにインストール – 講師は講義時間の半分くらいは実際にPCを操作し説明 • 教室とオンラインのハイブリッド形式、コメントを通した学生 とのフリーディスカッション
技術の民主化 (democratization)が進行中 • 技術の民主化 – ここでは大学、大企業、先進国などにいなくても、誰もがその技術を身に付け活 用できる状況 – 例: • 3Dプリンタによって安価に工業製品レベルのモノづくりが個人で可能に • 低廉なコンピュータによって発展途上国でも情報教育が可能に • 背景:インターネットによりノウハウ、情報交換が加速 – 個人が知識やノウハウをメディアに乗せ発信することに追い風 – 検索によって世界最先端の知識に容易にたどり着ける https://en.wikipedia.org/wiki/Democratization_of_technology
オープンソースソフトウェア(OSS)で 交通の課題に取り組める時代 • GISなら – ArcGIS 対 QGIS • データベース(RDBMS)なら – Oracle Database 対 PostgreSQL • 交通シミュレーションなら – PTV Vissim 対 sumo
データにおいてもオープンデータが進行中 • 国の基礎データは多くが公開されている – 国勢調査、道路交通センサス • 交通データのオープン化も進行中 – 公共交通オープンデータ(路線バスなど) https://gtfs-data.jp https://www.e-stat.go.jp
オープンを前提としたエコシステムの中で スキルを身に付ける必要性 • 技術(ツール)もデータもオープン化され、世界の誰もが最先端の ものにアクセスできるように • オープンソースは誰でも開発に参加できるため、最先端の知見が集 まるように • オープンな技術を前提としたスキルは所属組織などに因らず持ち運 び可能 • 特定の立場でのみアクセスできるデータ、特殊なツールや一般的で ないデータ形式などはあるが、スキルの中心にはなりにくい
交通DX 日本の関係者が真に向き合うべき課題
そもそもDXとは? • 企業がビジネス環境の激しい変化に対応し、データとデジタル 技術を活用して、顧客や社会のニーズを基に、製品やサービス、 ビジネスモデルを変革するとともに、業務そのものや、組織、 プロセス、企業文化・風土を変革し、競争上の優位性を確立す ること – 「DX推進指標」における定義, 経済産業省, 2019年7月 • 結果:顧客や社会のニーズに基づいた製品やサービス • 手段:データとデジタル技術を活用 • 波及効果:業務、組織、プロセス、企業文化・風土の変革
DXの実現とは:デジタル人馬一体で高速PDCA が継続する状態を作る • すべてITがやってくれる – AI・自動運転を導入して任せればオッケー • 絶え間なくデータを突き付けられ、迅速な判断・実行を求められる – 判断の結果も、デジタル技術のおかげで即現場に反映される – 「何を判断するか」自体も進化する • 乗りこなす人間の側に相応の能力が求められる→組織風土の変革 – 「顧客や社会のニーズに基づいた交通」をあらゆるスケールで考え続ける必要 – 事務職において「同じ仕事をミスなくやり続ける」スキルからの脱却
国土交通省における交通DX? • 地域公共交通の「リ・デザイン」3本柱のひとつ – 交通DX – 交通GX – 3つの共創 • DXを誤用・限定解釈 – DX・GXと並べることで何でもアリに 「交通DX・GXによる経営改善支援事業」より
都市交通計画はそもそもデータ活用? DXによって長期PDCAサイクルを活性化・実質化 データ 改善 パーソントリップ調査 地域公共交通計画 都市交通マスタープラン 都市・地域総合交通戦略 実施計画 DXのサイクルは 数日〜数ヶ月 データに基づいた課題解決? 5年サイクルの地域交通計画 現状の課題に対する地域交通資源の配分? 立地適正化計画 10年サイクルの都市交通計画 データに基づいたべき論? • • 数日から数ヶ月の超短期サイクルが常に回っていることで、 長期的なサイクルにおける質やスピードも高まる 長期計画が示すビジョン・目標・スケジュールとの整合性 を常にチェックする
交通DXの対象の半分は行政組織 制度・政策・補助金の 効果や評価は? 国交省 制度・法令 地域交通のデータ一式 が溜まる(ただし紙) 運輸局 紙による 届出・申請・監査 検索、呼出、支払などの デジタル化が進行中 政策・補助金 協議会を開催 (ただしデータなし) 交通行政のDX 公共交通 事業者 自治体 スマホ アプリ 自治体へのデータ 提供義務なし 交通サービスのDX • 交通行政のDXが進まない限り公共交通事業者は帳票地獄が続く 利用者
行政が地域交通の司令塔
背景: 地域交通における行政の役割の高まり • 地域交通法(活性化再生法) 改正で地域交通のリ・デザイ ンを求めている • 協議会の開催など地方自治体 に期待される役割は大きい
地域公共交通会議など • 市町村が主体となり、地域の交通事業者や利用者などを集めた 協議会を開催できる 出展: 中部運輸局愛知運輸支局 「地域公共交通会議等運営マニュアル」
運輸行政全体で データの流れを作る必要性
データの流れからみたバス事業 許認可権限 形式的な要件は確認はするが 地域の状況を踏まえた判断はしない 運輸局 (国) ダイヤ改正・臨時便 路線やバス停の新設・廃止 新規参入・撤退 公共交通 事業者 許認可・申請 紙ベース アプリ 事業者 利用者 GTFSによって デジタル化が進む 利用者への情報提供はデジタル化されつつあるが、 国への申請・届け出はアナログのままではないか?
運輸局への紙による膨大な申請・届出業務 バス会社(永井運輸@前橋) 関東運輸局 太田恒平, 水野羊平, 三浦公貴, 伊藤昌毅, "GTFS-JPデータを用いた乗合 バス事業の電子申請に向けた基礎検討 〜帳票地獄からの脱却による働き 方改革を目指して〜", 第59回土木計画学研究発表会, 2019年6月9日.
利用者向けのデジタル化を進めたところで…
IT産業としての モビリティを構想する
第5章 情報技術による再構築 2021年8月発行 • モビリティはIT産業になる × ITは地域モビリティにどう役立つの か? ○ IT企業としての地域モビリティ企業 を生み出す必要がある
なぜモビリティはIT産業になるのか(ITの強み) • 供給の最適化が可能 – 移動したい人に速やかに最適な移動手段を提供 • 需要の喚起や制御ができる – TDMのようなことを、もっと自然に、気付かれずに出来る • 需要と供給の一体的制御 – プラットフォーマーを介して需要と供給がリアルタイムに調整される • 低熟練者の高付加価値化 – ITのサポートで運転や案内などが可能に – 人材不足に対応
100年前のベンチャー企業 / 今のベンチャー企業 鉄道・バス・ タクシー企業 IT企業 1900年頃 2000年頃
Software Is Eating the World: 注目すべきはソフトウェア • マーク・アンドリーセン氏によるウォールストリート ジャーナル紙への寄稿文(2011年8月) • さまざまな既存事業や業界が、ソフトウェア上に再構築され、オン ラインサービス化しつつある。 • 映画、農業から国防にいたるまで、このトレンドの勝者の多くはシ リコンバレー型起業家が経営するテクノロジー企業だ。 • こういった新興企業が既存の業界構造に襲いかかり、破壊しつつあ る。 • 今後10年、もっと多くの業界のビジネスモデルがソフトウェアに よって再編され、世界を席巻するシリコンバレー企業がさまざまな 分野で変革をもたらすことになるだろう。 https://trailblazing.hatenablog.com/entry/2015/05/27/インターネット:マーク・アンドリーセンの予
ITが全てを飲み込む? 不動産 IT企業 自動車 電機 行政 放送 旅客 広告 情報 サービス 出版 農林水産 医療 物流 金融 材料 鉄鋼 食品
ITが全てを飲み込む? 不動産 自動車 電機 農林水産 IT企業 行政 放送 旅客 広告 情報 サービス 出版 医療 物流 金融 材料 鉄鋼 食品
ITが飲み込んだもの • 情報を主体とする領域でITと正面からぶつかるのは難しい https://www.amazon.co.jp/dp/B07MGM9HZ5 https://booksfujinoya.com https://goldenyokocho.jp/articles/593
• x 2021年 総務省調査 https://www.itmedia.co.jp/news/articles/2108/26/news163.html
もし今、ゼロから交通事業を作るなら? • IT企業としてモビリティ企業を作るはず • コンピュータを、複雑で難しく、無くても何とかなるものとは 捉えず、当然の前提として考える – IT企業の発想なら、車両を揃え、運転手を雇い、営業所を設置するコストの方が よほど大きなものであると考えるはず • モビリティはITによくはまる産業の1つである
多くのライドシェア(ライドヘイリング) サービスが登場 2010年 サンフランシス コで設立 2013年 東京でタクシー 配車開始 2016年 トヨタと提携 2016年 京丹後市で「さ さえ合い交通」 2012年サンフランシス コで創業 2015年 楽天が出資 2017年 Googleが出資 2012年マレーシアにて創 業 2012年 中国で創業 東南アジア8ヶ国168都市 でサービス提供 2015年 Lyftと提携 2017年8月 トヨタ自動車 などと協業 2018年 Uberの東南アジ ア事業を買収 中国最大のライドシェア 2016年 Appleなどが出資 2016年 Uberの中国事業 を買収 2018年 日本で事業開始
なぜモビリティはIT産業になるのか(ITの強み) • 供給の最適化が可能 – 移動したい人に速やかに最適な移動手段を提供 • 需要の喚起や制御ができる – TDMのようなことを、もっと自然に、気付かれずに出来る • 需要と供給の一体的制御 – プラットフォーマーを介して需要と供給がリアルタイムに調整される • 低熟練者の高付加価値化 – ITのサポートで運転や案内などが可能に – 人材不足に対応
供給の最適化が可能 → 受け身の最適化 • 移動したい人に速やかに最適な移動手段を提供 • 自動運転、スマートシティにより更に加速が期待
Kutsuplus • 2013年に開始したヘルシンキ首都圏のための公営デマンド交通 – 市街地は駐車場が少ない • スマートフォンから出発バス停、到着バス停、5,10,45分以内を 指定して予約 – バスと違って路線や時刻を知ることなく利用可能 • 9人乗りのバスが最適ルートで走行 • 料金 – 3.5ユーロ+距離加算(タクシーより安価) – 速達性に応じて急行、普通、エコノミーの区分け • AALT大学(コンピュータサイエンス学部)の研究プロジェクトと してスタート
• ああ http://www.muotoilutarinat.fi/en/project/kutsuplus/
2015年末 サービス終了 • サービスの効率化の ために大規模にする 必要があった – 〜2015年: 15台 – 2016年: 45台を計画 – 2017年: 100台を計画 • 必要なコストに理解 が得られなかった
chariot • サンフランシスコのスタートアップ による次世代バスサービス – 通勤客対象 – 2014年創業 • 利用者からの「クラウドソーシン グ」で経路を作る仕組み – ユーザは出発地、目的地を投票 – 現在ベイエリアでは28のルートで100台が 走行中 • 2016年 Ford Smart Mobility が買 収 – 全米に
需要の喚起や制御ができる • 移動したい人に速やかに最適な移動手段を提供 • TDMのようなことを、もっと自然に、気付かれずに出来る • 「需要は作り出すことが出来る」という発想は民間企業のほう が馴染みやすいのではないか?
モビリティとのタッチポイントが デジタルになったインパクト
交通行動におけるスマホの役割の拡大 • なぜ使えなかった?雪の日の交 通アプリ – アプリに騙されてバス3回も逃した – 乗る予定のバスがアプリから消えた – タクシーアプリでずっと探してたけど全 然駄目 • →平常時に使えるだけでなく、 緊急時にも使えて当然という利 用者意識 – 悪天候なら乱れて当然、で思考停止しな い NHK NEWS Web 2016年1月19日 110
交通事業者による検索エンジン最適化(SEO)的な発想 日経MJ 2015年10月19日 京阪電気鉄道社長インタビュー 鉄道に乗る際に利用者はスマホの 乗り換えサイトを利用します。 いくら沿線の良さをアピールしても大 半の方はサイトの上に表示された時 間が早いほうに乗ってしまう。先に 表示されないと選ばれない。鉄道を 選ぶ最大のポイントはサイトで上位 に表示されることになりつつある。 これは無視できない。だから1分でも 2分でも早くしようと努力しています 2015年10月25日 くらしの足をみんなで考える全国フォーラム2015 ラウンドテーブル インターネットやスマホはくらしの足にどう踏み込むのか 111 太田恒平氏スライドより
乗換案内サービス 駅すぱあと Yahoo!乗換案内 駅探 乗換案内 NAVITIME ジョルダン 乗換案内 Google Maps Apple Maps
交通行動におけるスマホの役割の拡大 • なぜ使えなかった?雪の日の交 通アプリ – アプリに騙されてバス3回も逃した – 乗る予定のバスがアプリから消えた – タクシーアプリでずっと探してたけど全 然駄目 • →平常時に使えるだけでなく、 緊急時にも使えて当然という利 用者意識 – 悪天候なら乱れて当然、で思考停止しな い NHK NEWS Web 2016年1月19日 113
SEOでインターネットのトラフィックを集める
Google検索のFパターンのようなことも起こる? • 2000年代にGoogle 検索は上位しか 注目されないと話題に • サーチエンジン最適化(SEO)の根 拠に
石村怜美, 梶原康至, 太田恒平: 「乗換検索サービス の経路選択データを用いた公共交通の経路選択行 動分析」, 第49回土木計画学研究発表会, 2014. • x
• x
太田恒平, 渡部啓太, 小竹輝幸, 梶原康至: 「カーナビ が 経路選択を左右する」, 第53回土木計画学研究発表 会, 2016年. • x
需要と供給の一体的制御 → 攻めの最適化 • プラットフォーマーを介して需要と供給がリアルタイムに調整 される • 「囲い込み」へ
低熟練者の高付加価値化 • ITのサポートで運転や案内などが可能に • 人材不足に対応(ギグワーカー)
リープフロッグ現象が起こりえる領域 • 既存の社会インフラが整備されていない新興国において、新し いサービス等が先進国が歩んできた技術進展を飛び越えて一気 に広まること(Wikipedia) • 例: – 発展途上国で携帯電話やスマートフォンが固定電話を飛び越えて普及 – 中国で世界に先駆けて電子決済が普及、一般化
ITモビリティ企業はIT企業の方法論を 持ち込みモビリティ企業を運営する • ITのスケーラビリティを重視 – ITは一度仕組み(システム・プログラム)をつくると限りなく安価にコピーを広 げられる • 利用者のデータから経営判断や施策実施 – 利用者のデータを中心としたシステム構築 – 今の交通事業者は「利用者」というデータを持っている? • データに基づく絶え間ない改善 • モビリティ版DevOps(開発と運用の一体化)
1. 多様な技術を知ろう・身に付けよう
ハンマーを持つ人にはすべてが釘に見える • 変化が激しい時代の中で、1つのハンマーしか持たないのは最 悪の生存戦略 – 「どんどん減る釘を奪い合う」世界に見えてくる • 「違う問題を違う方法で解く」経験を貪欲に求めよう • コンサルに「プログラミングを覚えて欲しい」という話をする と「では若い人に」とか言いがち – 役所や企業は人を育てる役割を放棄してしまったのか?
技術は課題に先行する
バスもタクシーもなかった時代を想像してみよう • aa 何か新しい 事業を始めよう 何に注目してアイディアを得る?
何に注目してアイディアを得る? • 人の暮らしからアイディアを得る – 人々は、移動したくても歩く以外の移動手段が無くて困っている • 技術からアイディアを得る – 自動車というものが発明されたらしい。このように使えるのではないか? – 金を取って人を乗せたら儲かるかも? • 当時の人の気持ちに立てば、前者の発想は無理だろう
日本初のバス • 1903年9月20日、京都の堀 川中立売 - 七条駅、堀川中 立売 - 祇園間で、二井商会 による乗り合い自動車の運 行 http://www.bus.or.jp/mini/
社会課題と技術開発の相互作用で 技術も社会もその姿を変えていく 高速に人や物を運ぶ装置 高速に大量の人や物を運ぶ装置 高速に安価に大量の人や物を運ぶ装置 高速に安価に安全に大量の人や物を運ぶ装置 高速に安価に安全に環境に優しく大量の人や物を運ぶ装置
とはいえ、 人や物を運ぶ装置に変わりは無い
コンピュータの歴史(の一部) メインフレーム (1950年代〜) ワークステーション (1980年代〜) ラップトップ (1990年代〜) タブレットPC (2000年代〜) ミニコンピュータ (1970年代〜) IBM System/360 UNIX, インターネット などのはじまり パーソナルコンピュータ (1980年代〜) PDA (1990年代〜) スマートフォン (2000年代〜)
登場から70年以上経つが コンピュータが何であるか誰も分からない 高速な計算機 文字や情報の記録装置
歴史を変えた技術 • x 自動車(内燃機関) 蒸気機関 活版印刷
「地域モビリティ」という課題を解決するために、 エンジンや自動車を発明した? • かつては、足や馬を使った移動が当たり前で、移動が不自由で あることを「課題」とは認識されていなかった • 「乗合」「定時定路線」などの社会システムは、技術が社会に 定着する過程の中で考え出された
2. オープン化・標準化に向き合おう
公共交通のデータにも色々な種類がある • 需要 – 経路検索のログデータ • 供給 – ダイヤ・路線図 • 運行 – バスロケーションシステム • 利用実績 – ICカード(乗車人数や区間) – パーソントリップデータ • 経営 – 運賃収受 利用者に最低限必要な情報
GTFS形式 • 世界で広く使われる形式 • 乗換案内に必要な情報(バス停・駅+路線+時刻表+運賃)をまとめて格納 したファイル形式 バス停/駅+路線 時刻 運賃
GTFS: Googleによるデファクト スタンダードが出発点 • 2005年オレゴン州ポートラン ドの公共交通事業者とGoogle によりGTFSという標準規格が 作られた – 2010年前後から米国で普及 – オープンデータとして公開 • 現在はGoogleの手を離れ、世 界中でデータが作られている http://qiita.com/niyalist/items/5eef5f9fef7fa1dc6644
GTFS-JPにはCSVファイル形式で以下の情報が格納 • • • • • • 事業者データ バス停データ 路線データ 時刻表データ 路線図(緯度経度)データ など
標準的なバス情報フォーマットのオープンデータ整備が進行中 バス業界において「標準化」「オープン化」が同時に進行中 路線 時刻 運賃 リアルタイム 「標準的なバス情報フォーマット」(世界標準のGTFS互換)でデータ整備 乗換案内・MaaS サイネージ・印刷物等 交通分析・計画 149
2019年2月:90 2019年7月:126 151 21年1月 20年10月 20年7月 20年4月 20年1月 19年10月 19年7月 19年4月 19年1月 18年10月 18年7月 18年4月 2018年11月:30 18年1月 2018年7月:23 17年10月 17年7月 事業者数 350 300 250 200 150 100 50 0
オープンデータとして自社などのWebページで公開 • Webページからデータを誰でもダウンロード出来るように
GTFSリアルタイム(バスロケ)提供も増加中( 57事業者) • 便ごとのバス停通過時刻、緯度経 度情報などをリアルタイム公開 – Protocol Buffer形式 • 混雑情報も提供可能 – 2020年より宇野バス、横浜市交通局が対応
2020年: 都バス・横浜市営バスの GTFS-JP・GTFSリアルタイムデータ公開 • 公共交通オープンデータ協議会(坂村健会長) による取り組み – 公共交通オープンデータセンター • 都バスは、Google Mapsでバスロケを考慮し た検索が可能に 2019年3月
GTFS-JPにはCSVファイル形式で以下の情報が格納 • • • • • 事業者データ バス停データ 路線データ 停車時刻データ 路線図データ など
3. データを自分で触ってみよう
公共交通の運行本数の直感的把握
人口と運行本数比較
中心地からの到達時間
地域ごとの通える高校数
行政やバス事業者幹部と実証実験に向けた検討 • 採択決定後から行 政(市・県)・バ ス事業者幹部、地 域ITコミュニティ などと打ち合わせ を重ねる • 熊本エリアにおけ る実証実験や フィールド調査な どを推進 162
4. 発信しよう、交流しよう
海外の事例: 交通事業者がオープンデータを提供 • 路線図、時刻表、リアルタイム車両位置情報などのデータの利用を開放 • 自由に使ってもらうことで、アプリの作成や工夫を凝らした印刷物などの情 報提供を促進 • アメリカ、ヨーロッパでは当たり前になりつつある
オープンデータから様々なアプリが開発される • 大企業、ベンチャー−企業、個人がアプリ開発
DB Open Data Hackathon • ドイツ鉄道によるソフトウェア開発者との交流イ ベント – ハッカソン: ハック+マラソン 限られた時間内にソフトウェ アを開発しアイディアや出来を競うイベント – ベルリンにてこれまで7回開催 • 最新回(2017年5月12ー13日)はJR東日本をパー トナーとして開催し、DBだけでなく山手線などの データを提供して実施 – 最速で日本語ブログに報告
技術書展6・8で同人誌を販売 • 公共交通オープンデータの紹介 や、それを利用したプログラミ ング方法を解説 – GTFSとODPTデータを紹介 – QGIS、SQL、Processing、Lineボット などで活用 • 122ページの書籍を300部以上 販売
地域コミュニティが データ活用 Code for Saga 富山県資料
オープンイノベーション: 地元のITエンジニアが IoTデバイスで交通オープンデータ活用 • 地元のITエンジニアが路線バスオープンデータを利用したミニ サイネージを試作、SNSで話題に – →オープンイノベーションの素地作り 169
本講義のこれから
講義予定 (全13回) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 1. 交通情報学入門 地理情報システム(GIS)と時空間データベース 1 地理情報システム(GIS)と時空間データベース 2 PostgreSQL + PostGIS + QGIS による公共交通データ分析 1 PostgreSQL + PostGIS + QGIS による公共交通データ分析 2 ゲスト講義1: 交通データの可視化(にゃんこそば氏) PostgreSQL + PostGIS + QGIS による公共交通データ分析 3 ゲスト講義2: 交通シミュレーションの実際(堀口良太・(株)アイ・トランスポート・ラボ 代表取締役社長) ネットワークの探索と自動車交通 ミクロ交通流シミュレーションSUMO入門 ミクロ交通流シミュレーションSUMO応用 都市交通計画学温故知新 交通情報学の未来(ディスカッション)
地理情報システム(GIS) • 交通の理解、分析に地図は欠かせない • 空間情報を扱う手法を身に付ける – 可視化 • 伝えたい情報をどう表現するか – 空間的な演算処理 • 例えば2点の緯度経度から距離を計算できる? • QGIS演習 – オープンソースのGIS • 空間データの所在地 – 国勢調査、メッシュデータなど
PostgreSQL + PostGIS + QGIS による 公共交通データ分析 • 空間情報の管理や分析のためのSQLを学ぶ – 大量のデータをファイルやExcelで管理、処理するのは非効率 – 手元のPCだけでなく、業務用DB、ビッグデータ処理などにも使える汎用スキル • SQL: リレーショナルデータベースを操作するためのプログラ ミング言語 – PostgreSQL, Oracle Database, MySQL, Google Cloud BigQuery などを操作 する言語 • PostgreSQL + PostGIS – オープンソースのRDBMS – 空間データの独特な処理が可能
ミクロ交通流シミュレーションSUMO • 自動車一台一台の振る舞いをモ デル化し、計算機内に再現した 道路環境に配置 – 追従、車線変更などの振る舞いをモデル 化 • 特定の条件下での交通状況を再 現 – 道路ネットワーク、交通量などを与える • 交通流シミュレータの種類 – マクロシミュレータ、メソシミュレータ なども
手を動かす実践的な講義 • ほぼ全ての操作やSQLプログラ ミングなどを伊藤が講義中に実 演 – 出来る範囲で講義中に一緒に試してく ださい • 各自のPCにQGIS、PostgreSQL、 sumoなどをインストール • 実際の公共交通ビッグデータな どを用意、配布
ゲスト講師1: にゃんこそばさん • データ分析、ビジュ アライゼーションの 第一人者 • 鮮やかな切り口と確 かな技術を学びたい
チェーン店出店の可視化 https://www.itmedia.co.jp/business/articles/2401/01/news003.html
ゲスト講師2: 堀口良太氏 • 株式会社アイ・トランスポート・ラボ 代表取締役社長 • 交通シミュレーションの第一人者 • 「街路網交通流シミュレーション AVENUE」、「広域都市道路網交通流 シミュレーション SOUND」を研究開 発し事業化
参考: 2023年度ゲスト講師 • x
講義資料・講義動画など • スライドは講義直前までにUTOLで共有 • 講義動画を共有 – 簡単な編集を行った上で、金曜日頃までにYouTubeにアップロード – レポート前の復習などにも利用してください
講義の一部を一般公開 • 学生とのディスカッションな どを除いた、主に講師が話す 部分を一般公開 – 講義資料や演習データなども一般公開 https://itolab.t.u-tokyo.ac.jp/education/
課題・評価 • 毎回の出席コメント – UTOLに入力(本日も) – 講義中にフィードバック・ディスカッションします – 締切: 1週間後の24:00 • 中間レポート • 最終レポート
2023年中間レポート: 大都市交通センサスの分析 • 大都市交通センサスから興味深いと思える交通現象を見つけ出し、地図 やグラフを使って説明せよ。 • 分量: 1000字以上 +図表を2点以上 – English: more than 500 words • SQLを利用した場合は、どのようなSQLを利用したかレポートに含める こと(末尾に付録 appendix として載せてもいい) 。SQLの利用は加点 要素である。 • ※ ChatGPTなど生成AIをレポート作成に利用した場合は、何をどのよう に利用したかをレポートに含めること(末尾に付録 appendix として載 せてもいい)。どのような使い方をしても減点はしない。 • 課題に対する要望は本日のコメントとしてください
2023年最終レポート課題 • 分量: – 1500字以上+図表を3点以上 (English: more than 750 words) – Appendixとしてレポートに利用したSQLやPythonプログラムなどを添付してください • 課題:「交通情報学特論」の講義内容を踏まえてこれからの交通の発展 に寄与するテーマを設定し、論じてください。 • テーマの例(これ以外でも自由に考えてください。テーマ自体の独創性 は求めません) – – – – 交通データに基づいた政策提言 交通データとシミュレーションを用いた交通現象の解明 GISによる交通の地域間比較と課題の発見 交通データ分析に使えるツールの調査と利用可能性 – – – – SQLや交通ビッグデータの利用、GISの利用、交通シミュレーションの利用 複数のデータを結び付けた分析 授業で扱っていないデータやITツールの活用 プログラミング • 加点要素(ITとデータの観点から「手を動かす」ことを重視します)
本日の課題 • 授業の感想、及びこの授業を通して学びたいことをコメントし てください • UTOL (LMS) で提出 – 締切: 4月17日 24:00
次回までの準備 • QGISのインストール – 各自のPCにQGISをインス トールしてきてください
Q&A