>100 Views
November 29, 17
スライド概要
2017/11/27
Deep Learning JP:
http://deeplearning.jp/hacks/
DL輪読会資料
A simple neural network module for relational reasoning 2017/11/20 Ken Maeda Yamaguchi Lab. The University of Tokyo
F>1! 2
0+3? • P@Vo A simple neural network module for relational reasoning (Relational Networks / RNs) • Ķâ Adam Santoro , David Raposo , David G.T. Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap • ¼ő 2017/6/5 on arXiv (https://arxiv.org/pdf/1706.01427.pdf) 3
#B
• Relational Reasoning (¨āƔ)
• IJŁÄň*ĵýŁƁĖ
• Neural Network$*çÉŐ%·<;#
• RN=ŀu#*Ÿĭ*®=Ā!
• DL>ETFRj(ė1Ç2¨āƔƀiLko
• 4"*UPOSV$±õ
• CLEVR, Sort-of-CLEVR, bAbI, Dynamic physical systems
4
Relational Reasoning • BsT?T?%*Ōą*¨(" IJŁÄň*ĵý #āƔ:ŖƎ+zśŁ( • ÓÿgMTnóč*Śÿ=āƅä9õ=À čŋƎ* :ŧ»=ÂĴ: xŴ$ÃƉ# • Non-Relational Question: ŌĿ*C`LAFV*ģą(:āƔ • Relational Question: C`LAFV*¨*ŷÜŁ'āƔ 5
Relational Reasoning • ÿ¿IJŖ(%!#+ÉŐ • Symbol Grounding problemHs^kP+Å*xŴ=ƅ# *$Å*ĚÒ$+IJŖ+á¶$' ' • ŇŁç'&*>aqR+ĉUP8޶=ÂĴ ħſ"[@N=2ù°$zś:%ħ • U?amYsG$*>aqR*ħ+Ę*Âğĕ '¨$ :% UPţĢ*Ÿĭ(¥Ɠ:%ħ • CNN5MLP'&*¡Ǝ'YkmoZSVrF>ETFRj$4 z³İî'¨āƔĶÉŐ$ :%=áõ 6
Relational Network • ¨āƔ*3(íŞ;NNiLko • Ksao'amG>sWap@ŰÞÝňŁ( Ĺ • NN*ŖŁÂğ=ĄŹ¨āƔ*%':ľŌĸ=ġ: 7
Relational Network • ¨āƔ*3(íŞ;NNiLko • Ksao'amG>sWap@ŰÞÝňŁ( Ĺ • NN*ŖŁÂğ=ĄŹ¨āƔ*%':ľŌĸ=ġ: relation 2 MLP end-to-end$şŨŖ 8
RN3<:
• ¨āƔ=ç:(Learn to infer relations)
• Ĕ#*C`LAFVc>*¨=ç
→RN+C`LAFV*¨*ĥÑ4*áÐ*xŴ4IJ8'
→RN+ĩ÷¨*ĥÑ%|¢=āƔ:%=-ŠƁ
• UP½Ɔ
(Data efficient)
• İz*ă!"$¨=Õ
• !"ŌĿ*C`LAFV*Ōĸ(C\_?SV'
• #2*¨=zŅ(ç
= ř=Ġþ
• zƒ*C`LAFV(ĩ#Òƀ:(Operate on a set of objects)
• ŒƎŎ*C`LAFV*ïò(ĩ#ţū(summation ΣŮõ)
→ëƎ+C`LAFVèÆŎ*¨*zśŁ'޶=2
9
(1/4) 1. CLEVR • 3DC`LAFV*QAUPOSV • querry attribute, compare attribute, … • 2]Ps$á´ 1) 2) pixel version 2D pixel form state description version 3DËšü©… CLEVR(̪) 10
(2/4) 2. Sort-of-CLEVR • Ķâ8ÒĆUPOSVCLEVR794İî • Ğ(msQh'©*6ü*C`LAFV=Řij • Ğ(ĩrelational/non-relationalàŸ=;;10Ÿƀx Sort-of-CLEVR ©+2åƏ8đĮ 11
(3/4) 3. bAbI • TEMVbM*QAUPOSV • }ƕŕă'&ŌĿ*åƏ*āƔ (ĩ:20DTIn*Ÿĭ • Ex: “Sandra picked up the football” and “Sandra went to the office” Q: “Where is the football?” A: “office” 12
(4/4) 4. Dynamic physical systems • MuJoCoŧƅBsLs(7:,)KMThUPOSV(Ķâ8ÒĆ) • -":%ŧĨ*7 (Ļ)Ŭ: • "*do+³' \Z$ƒ¯ • do*ƒĤÚ(:Ëš8C`LAFV*\ZČĤ* źŶ %KMTh(do=[W%#ČĤGm_)*ă=āƔ 13
(1/4) CLEVRƀ*>ETFRj iLkoRN CLEVRƀ*iUo • RN(+CNN5LSTM'&=C`LAFV%#Ų3Ç3:êŏą : • ŒƎ+C`LAFV38;:*xŴ=×Ŀ:ŠƁ+' 14
(2/4) • pixel(Ğ)*ãt - CNN - • Ğ+128 128 • 4"*û1Ç1Ę=#d d*k¹*ŌĸfSa(û1Ç2 • d d*kÛµ*Oo(*ĜĩŁ'¦Łwij=Üœx*Ëš$ PGŤ4*=RN*C`LAFV%#t (ĒcLĀ) • C`LAFV(+ŗ«ŌĿ*ŧƅC`LAFVTFMRjŧƅŁC`LA FV*¯Æ'&=2%$:*$çaqOM(Ĭ'êŏą=Ž: • úĪ*ì*ãt • úĪ=ìÄƐ=*00C`LAFV%#RN(ŒƎ$: 15
(3/4)
• àŸũ*Ų3Ç1(7:ù°ŤRN - LSTM • !àŸŎž(#ðƅ=ūÁ$:7
• Ex.("
#àŸ;#
RN=ůĈ:
:%ƇŰĨ*¨ą+ŶxŴ
LSTM
• àŸŎ*İ»(ćă=9ņ#oSF>SaT`o=ÒĆ
16
(4/4) • Ýē·»ũ*ãt - LSTM - • ĩ÷*àŸ*ĽĒ*JeVOSV%#ÍĬ20OsTsM=×Ŀ ;8*OsTsM(JeVOSVŎ*ĜĩŁ'wij=Ümbo $PGŤOsTsM=LSTM=ōƇ(İ»%(ðƅ: • Ĕ#*àŸũ=Ôô' %$ÙĒIJß=Íó¸(Ƃ: • LSTM*ÍæúĪ=RN.*ŒƎC`LAFV%: iLkoRN bAbIƀ*iUo bAbIƀ*>ETFRj 17
5;2((CLEVR-from-pixels)
• Image: 4 CNNs (24 kernels each), ReLU, batch normalization
• Question: 128 unit LSTM, 32 unit look-up embeddings
• !: 4-layer MLP (256 units each), ReLU
• $: 3-layer MLP (256, 256[50% dropout], 29), ReLU
• final layer: softmax over the answer vocab
• Learning rate: 2.5e-4, Adam, cross-entropy
• Training: 64 mini-batches, 10 computers
éƃ*CLEVRƀ>ETFRj%Ŝ/#Ksao'Âğ
*Ħ*PMF*iUoöÎ+Ɣũ*Appendix(Ï
18
-&% (CLEVR-from-pixels) • 95.5%*ĈƆ=įĆÿ=ĺ • Ğ%àŸ*1$§Ƒ;ĎÄiUo%Ŝ/#4 27%ø: SA : Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention networks for image question answering. In CVPR, 2016. 16 19
-&% (CLEVR-from-pixels) • compare5count% !¨āƔŠƁ'DTIn$éƃiU o79Ĭ ø: • ű²*iUo+ŜŁİî • Ő+·»5Ğ*ðƅ$+'¨āƔ( : %=ÜÊ 20
=4" A9E • C`LAFVŵ('!# • ÿ$4Ő :(ĞðƅŁ'ĄŹ) 21
-&% ( ) • CLEVR(from state descriptions): 96.4% • RN*ťŭą • Sort-of-CLEVR: 94%ĺ(¨ŝ¨ƋŰ) • RN*<9(MLP=Ö %ĈƆ:(63%) • Ō(”closest-to”5”furthest-to”PMF(¥Đ(52.3%) →āƔŖƎ' õ RN$*iUoķ+¨āƔ(ź½ 22
-&% ( ) • bAbI: 18/20(Ɩı95%) • Dynamic physical systems 1) do*\Z*źŶ: 93% 2) KMTh*ă: 95% • ťľ*MLP$+ƋŰ%4ĊŅ: 23
')%F • RN=ė1Ç2%$¨āƔPMF*ĆċĬŦ(¾ø • RNāƔ:%$CNN£ñ¦Âğ*ðƅ(ďŔ$ • ResNet'&*¡Ǝ'iUo4ðƅ+ŋxāƔ+¥ä4 • RNøƈ*ðƅ=ŻŊ#źƀ'C`LAFV*޶=ŋ$ • ŝÂğ;ŒëƎ$4RN+Âğ;āƔŖ • RN(+C`LAFV*ŌĿ*¨(:ÙĒIJß+ŠƁ' • ƄƀŖ'8,Õ½Ɔ*¾ø("':4 • Ⱥ+RN=ſ'ƍy*Ÿĭ(łƀ# 24
-8 https://github.com/whiteking64/Relational_Networks 25
-8#B • Sort-of-CLEVR=̶iUoöÎƔũp.12 • DL_phrFPytorch • CNN_MLP%*Ŝ+Ú*ńÆøÄ'!# ' 26
• 10000ų*Ğ 200ųTMVƀ • ĞJ@N75x75 • Ğ(ĩRelational/Non-relationalŸĭ=;;10Ÿƀx • 3"*J`P@a • Relational Question©ĂŪwijĽwij • Non-relational QuestionÍ4~ /¤ ʼn©*Ā©*ă • àŸbFVo+ļ11*\@XnbFVo 27
(RN7/C) • Ğ*ðƅ • CNN, 4Ę(DZo32, 64, 128, 256) • ReLU • Batch Normalization • àŸũ • RN(ĽČŒƎ((\@Xn('!# :3embedding%1':) 28
(RN/C) • MLP -!- • 4Ę(2000 units) • ReLU • MLP -$- • Íł • • • • FqMBsVq^ă Adam çƆ: 1e-4 gY\SR: 64 • 4Ę(2000, 1000, 500, 100 units) • ReLU • ÍæĘ • 10 units(answer vector*Ûµ) • softmaxă 29
iPython notebook6@ https://github.com/whiteking64/Relational_Networks/tree/master/Python_ver 30
$.% (1/2) • żę(ç(Ú9 2epoch 6 !#' …! • Ńĵ¬ ő!#420epochĵ *MFnsKlSV • ç+# :{÷ • Epoch1æƊÚ48%, 50% • Epoch2æƊÚ63%, 63% 31
$.% (2/2) • ī<9(CLEVRƀ*iUo$áĝç¯(20 epochs) • Relation accuracy: 88% • Non-relation accuracy: 99% TMVUP$*accuracy • 79ě¯³ '8ÔÃØƌ[1]3 • Relation accuracy: 88% • Non-relation accuracy: 99% 32
*',D [1] áĝ(ņ!#+v*peLVn=Ĭ https://github.com/kimhc6028/relational-networks (ÔÃ( 33
34