Evaluation of Session Segmentation Methods Using Behavior and Text Embeddings

145 Views

November 02, 24

スライド概要

Yongzhi Jin, Kazushi Okamoto: Evaluation of session segmentation methods using behavior and text embeddings, The 11th International Symposium on Computational Intelligence and Industrial Applications (ISCIIA2024), 2024.11, Beijing, PRC.

profile-image

Data Science Research Group, The University of Electro-Communications

シェア

またはPlayer版

埋め込む »CMSなどでJSが使えない場合

関連スライド

各ページのテキスト
2.

:Session :Item 1 1 2 3 2 6 7 8 3 9 10 ? 4 5

4.

1 2

5.

Word Word2Vec Item2Vec

7.

Segment Method Embedding Cos Similarity Item2Vec Session Set Word2Vec text-embedding-ada-002 k-means PR-AUC ROC-AUC F1-score LightGBM Evaluation SVM LR Annotation

10.

Item 1 Item 2 Item 3 Item 4 Item 5 Embedding 3 Item 3 'Item Name' Pre-trained model Text Embedding Embedding 3

11.

Segmentation Input YES Segmentation Cosine Similarity LightGBM SVM LR Input k-means YES Embed Embed Embed Embed Cluster A Cluster A Cluster B Cluster B Item 1 Item 2 Item 3 Item 4 Item 1 Item 2 Item 3 Item 4 Output : Segment probability {0.00 1.00} Output : Segment judgment {0,1}