230912_地震研サマースクール

538 Views

November 21, 23

スライド概要

profile-image

研究してるひと https://www.eri.u-tokyo.ac.jp/people/ito/

シェア

またはPlayer版

埋め込む »CMSなどでJSが使えない場合

関連スライド

各ページのテキスト
1.

変分法データ同化を用いた 断層すべり面の摩擦空間特性評価 伊藤 伸一 東京大学地震研究所 c 伊藤伸一 01/21

2.

Outline 1. 導入:断層すべりと摩擦特性 2. 手法:変分法データ同化 3. 解析:摩擦空間特性の不確実性評価 4. まとめ 地震研 サマースクール c 伊藤伸一 02/21

3.

Outline 1. 導入:断層すべりと摩擦特性 2. 手法:変分法データ同化 3. 解析:摩擦空間特性の不確実性評価 4. まとめ 地震研 サマースクール c 伊藤伸一 02/21

4.

断層すべりと摩擦特性 ・すべり運動と摩擦特性は密接に関係 垂直応力 ⌧ = µN <latexit sha1_base64="02qyrxtNtyLb9yvYQd1HSMOPRKI=">AAACwHichVHLSsNAFD2N73fVjeAmWCquylQFRRBEN65Eq1XBlpLE0QbzMplU2+IP+AMuxIWCivgZbly4deEniEsFNy68SQOipfWGZO6cuefeMzmqY+ieYOwlJrW0trV3dHZ19/T29Q/EB4c2Pdt3NZ7VbMN2t1XF44Zu8azQhcG3HZcrpmrwLfVgKTjfKnHX021rQ5QdnjeVfUvf0zVFEFSID+aE4svzcs705ZxqVldOCvEES7Ew5PokHSUJRLFqx5+Qwy5saPBhgsOCoNyAAo+eHaTB4BCWR5UwlzI9POc4QTdxfariVKEQekDffdrtRKhF+6CnF7I1mmLQ6xJTRpI9szv2zh7ZPXtlXw17VcMegZYyrWqNy53CwOnI+ue/LJNWgeIPq6lmgT3Mhlp10u6ESHALrcYvVc7e1+cyyeo4u2JvpP+SvbAHuoFV+tCu13jmvIkelbQEfyzZsELgmObboQMeAivTf42rTzYnU+mp1OTadGJhMTK1E6MYwwQ5N4MFLGMVWZpzhAvc4FZalIqSLR3WSqVYxBnGr5Aq39KLn80=</latexit> 摩擦力 ⌧ = µN <latexit sha1_base64="02qyrxtNtyLb9yvYQd1HSMOPRKI=">AAACwHichVHLSsNAFD2N73fVjeAmWCquylQFRRBEN65Eq1XBlpLE0QbzMplU2+IP+AMuxIWCivgZbly4deEniEsFNy68SQOipfWGZO6cuefeMzmqY+ieYOwlJrW0trV3dHZ19/T29Q/EB4c2Pdt3NZ7VbMN2t1XF44Zu8azQhcG3HZcrpmrwLfVgKTjfKnHX021rQ5QdnjeVfUvf0zVFEFSID+aE4svzcs705ZxqVldOCvEES7Ew5PokHSUJRLFqx5+Qwy5saPBhgsOCoNyAAo+eHaTB4BCWR5UwlzI9POc4QTdxfariVKEQekDffdrtRKhF+6CnF7I1mmLQ6xJTRpI9szv2zh7ZPXtlXw17VcMegZYyrWqNy53CwOnI+ue/LJNWgeIPq6lmgT3Mhlp10u6ESHALrcYvVc7e1+cyyeo4u2JvpP+SvbAHuoFV+tCu13jmvIkelbQEfyzZsELgmObboQMeAivTf42rTzYnU+mp1OTadGJhMTK1E6MYwwQ5N4MFLGMVWZpzhAvc4FZalIqSLR3WSqVYxBnGr5Aq39KLn80=</latexit> 地震研 サマースクール c 伊藤伸一 03/21

5.

断層すべりと摩擦特性 スティック・スリップの動画 https://www.youtube.com/watch?v=xGUaqd0_XSU 地震研 サマースクール c 伊藤伸一

6.

断層すべりと摩擦特性 ・すべり運動と摩擦特性は密接に関係 ・クーロンアモントンの法則(古典的) ① 摩擦力は垂直応力に比例する ② 摩擦は見かけの接触面積に依存しない ③ 動摩擦力は静摩擦力より小さく、すべり速度に依存しない ・物質や状況に依存する 地震研 サマースクール c 伊藤伸一 05/21

7.

断層すべりと摩擦特性 摩擦パラメータ場 ・岩石実験から得られる経験的摩擦則 A(x), B(x), L(x) <latexit sha1_base64="wjl5sSiyJLAw8uGLtQgRFVE9lX8=">AAAC0HichVFLLwNRFP6MV72LjcQGTYVEmtuSEDYeGwsLSpGoNDPjqknnlZnbpjSNWEn8AQsrEgsRW36AjYWthZ8gliQ2Fs5MR7yCM5m53/3u+c757hzF1jVXMHZfJVXX1NbVhxoam5pbWtvC7R3LrpV3VJ5SLd1yVhXZ5bpm8pTQhM5XbYfLhqLzFSU3452vFLjjapa5JLZtvm7IWVPb1FRZEJUJ904NpBWjVCwPDqUnpj/huXecCUdYjPnR8xPEAxBBEPNW+BZpbMCCijwMcJgQhHXIcOlZQxwMNnHrKBHnENL8c44yGkmbpyxOGTKxOfpmabcWsCbtvZqur1api06vQ8oeRNkdO2NP7Iadswf2+mutkl/D87JNq1LRcjvTdtC1+PKvyqBVYOtD9adngU2M+V418m77jHcLtaIv7Bw+LY4no6V+dsIeyf8xu2fXdAOz8KyeLvDk0R9+FPLi/bHorxkCRepv+RNwUaZRxr8P7idYTsTiw7HEwkhkcjoYagjd6MMATW4Uk5jFPFLUZx8XuMSVlJSK0q60V0mVqgJNJ76EdPAGfuCllA==</latexit> 速度-状態依存摩擦則 Dieterich (1979) ⌧t (x) = A(x) log (Vt (x)) + B(x) log (✓t (x)) + ⌧ 0 (x) <latexit sha1_base64="dxt0v5IQrn2jXj1FucQYrVGdwmM=">AAADNnichVFLS9xQFD5Ja6v2MdO6EVQIDlNGCsMZK1gKgrUbl75mFIwOSbwzc/HmQXJnUEPWgn+gi64qdCH+ge7duHDbhZvuSikiFCx046InmRQf4+OG5J77ne8757s5pid4IBGPFfXBw65Hj7t7ep88ffY8k33xshK4Td9iZcsVrr9kGgET3GFlyaVgS57PDNsUbNFc/xDnF1vMD7jrLMhNj63YRt3hNW4ZkqBqdluXRrMayqigm3a4EY1oE9r7/7Eu3LouWE0WKpcpus/rDTmivdamOpm6bDBp3EyPe62GGKXMJJ1mq9kcFjFZWmdQSoMcpGvGzR6BDmvgggVNsIGBA5JiAQYE9CxDCRA8wlYgJMyniCd5BhH0krZJLEYMg9B1+tbptJyiDp3jmkGitqiLoNcnpQZ5/IZ7eIaHuI+/8PzWWmFSI/aySbvZ1jKvmtnpn/97r8qmXULjQnWnZwk1eJt45eTdS5D4FlZb39r6eDb/bi4fvsJdPCH/n/EYD+gGTuuP9WWWzX26w49JXuI/lr+VIWGD+rvJBAKIaJSl64PrDCqjxdKb4ujsWG5yKh1qNwzAMBRocuMwCdMwA2Xqc6r0KYPKkPpV/a7+UH+2qaqSavrgylJ//wMAps00</latexit> 摩擦力 Aging 則 すべり速さ Ruina (1983) @✓t (x) =1 @t Vt (x)✓t (x) L(x) 状態変数 ※ 空間一様 かつ 定常 を仮定すると… A B > 0 のとき V % で ⌧ % <latexit sha1_base64="Inf9pdVSlPxl686s2QCM5T1hXQo=">AAACs3ichVE7LwRRFP52vNdjF41EIzYrGpuzixCFeDTK9dglWSIz42KYV2bubrDxB1Q6QUWiED9Do9Aq/ARRkmgUzsxOIgjOZOae+93znfPd+TTXNHxJ9BhT6uobGpuaW+Ktbe0diWRnV9F3yp4uCrpjOt6KpvrCNGxRkIY0xYrrCdXSTLGs7c4G58sV4fmGYy/JfVesWeqWbWwauioZKk4PzUxSfD2ZogyF0fczyUZJClHkneQ9VrEBBzrKsCBgQ3JuQoXPTwlZEFzG1lBlzOPMCM8FDhFnbpmrBFeojO7yd4t3pQi1eR/09EO2zlNMfj1m9iFND3RNL3RHN/RE77/2qoY9Ai37vGo1rnDXE0c9i2//sixeJbY/WX9qltjEeKjVYO1uiAS30Gv8ysHJy+LEQro6QJf0zPov6JFu+QZ25VW/mhcL53/o0VhL8MfSv1ZI7PF8J3TAxyFbmf1u3M+kmMtkhzO5+ZHU1ExkajN60Y9Bdm4MU5hDHgWes4NjnOJMGVVKiqZs1EqVWMTpxpdQrA+CGJpk</latexit> <latexit sha1_base64="FBwjGVsXNuFsiYr++dS5F9jSKqQ=">AAACt3ichVE9S8NQFD2N3/WjVRfBpVgqTuVVBT8m0cWxVduKbSlJfNXQNInJa7WW/gFnwUEUFBzEn+Hi4OrQnyCOCi4O3qQB0aLekLz7zrvn3vNyFEvXHMFYKyB1dff09vUPBAeHhkdC4dGxjGNWbZWnVVM37W1FdriuGTwtNKHzbcvmckXReVYpr7nn2Rq3Hc00tkTd4oWKvGdoJU2VBUE7mbzBZds2D4PFcJTFmReRziThJ1H4kTTDj8hjFyZUVFEBhwFBuQ4ZDj05JMBgEVZAgzCbMs0752giSNwqVXGqkAkt03ePdjkfNWjv9nQ8tkpTdHptYkYQY0/slr2yB3bHntnHr70aXg9XS51Wpc3lVjF0MrH5/i+rQqvA/hfrT80CJSx6WjXSbnmIewu1za8dn71uLm/EGtPsmr2Q/ivWYvd0A6P2pt6k+Mb5H3oU0uL+sdivFQJHNN/0HHDQJCsTP43rTDKz8cRcfDY1H11Z9U3txySmMEPOLWAF60giTXMMnOICl9KSVJRK0n67VAr4nHF8C+ngEwnEnR4=</latexit> <latexit sha1_base64="mb/MmbBEjXUIEosG2FbyDi0feJA=">AAACunichVE9S8NQFD2N3/Wr6iK4iKXiVF6roIiD6OLYVmsLtkgSn/pomsTktX6U/gH/QAcXKziIP8PFwdWhP0EcFVwcvEkDoqV6Q/LuO++ee8/L0WxDuJKxVkjp6e3rHxgcCg+PjI6NRyYmd12r4ug8q1uG5eQ11eWGMHlWCmnwvO1wtawZPKeVNr3zXJU7rrDMHXlu82JZPTLFodBVSVCxINVKweSq41in4f1IlMWZH7OdSSJIoggiZUWeUMABLOiooAwOE5JyAypcevaQAINNWBE1whzKhH/OUUeYuBWq4lShElqi7xHt9gLUpL3X0/XZOk0x6HWIOYsYe2Z37I09snv2wj679qr5PTwt57RqbS6398cvp7c//mWVaZU4/mb9qVniECu+VkHabR/xbqG3+dWLxtv2aiZWm2c37JX0N1mLPdANzOq7fpvmmas/9Gikxftjsa4VEmc03/IdcFEnKxO/jetMdpPxxGI8mV6Krm8Epg5iBnNYIOeWsY4tpJClOSdo4BpNZU3RFKGU2qVKKOBM4Uco8guKeJ6M</latexit> 速度強化 A <latexit sha1_base64="UoDujNyuXncqJwCG/86TAh40YX8=">AAADEnichVFNS9xQFD1G26r9cLQbwU3oMGIXHV60YCkIUjcuXPg1o2BkeHl9ow/zRfJmUEP+QNeFLrpS6KL0H3Qnblpw24U/QbrowkJb6MKbTFBbq30heeede8+95+U6oatizdhxl9Hdc+v2nd6+/rv37j8YKA0O1eOgFQlZE4EbRKsOj6WrfFnTSrtyNYwk9xxXrjhbM1l8pS2jWAX+st4J5brHN3zVVIJroholYTcjLhI75JFW3LX1ptS8keh0zHa8ZDt9nJ7HTJ2aU6b1pKOoX076l2zuHDZKZVZl+TKvAqsAZRRrPigdwcZLBBBowYOED03YBUdMzxosMITErSMhLiKk8rhEin7StihLUgYndou+G3RaK1ifzlnNOFcL6uLSG5HSRIV9Ye/ZKfvEPrAT9vvaWkleI/OyQ7vT0cqwMfBqeOnHf1Ue7RqbF6obPWs08Sz3qsh7mDPZLURH3959c7r0fLGSjLJ99pX877Fjdkg38NvfxbsFufj2Bj8Oecn+WOXaDI1t6h/kE4iRjdL6e3BXQX28ak1UxxeelqdfFEPtxQgeYYwmN4lpzGIeNerzGd/wE7+M18ZH48A47KQaXYXmIf5YxtEZn97Ddw==</latexit> <latexit sha1_base64="Y77GcsOK5eVQpTsUuk/LgfiHTJE=">AAACs3ichVE7LwRRFP52vNdjF41EIzYrGpuzixBReDTK9dglWSIz42KYV2bubrDxB1Q6QUWiED9Do9Aq/ARRkmgUzsxOIgjOZOae+93znfPd+TTXNHxJ9BhT6uobGpuaW+Ktbe0diWRnV9F3yp4uCrpjOt6KpvrCNGxRkIY0xYrrCdXSTLGs7c4G58sV4fmGYy/JfVesWeqWbWwauioZKk4PzUxSfD2ZogyF0fczyUZJClHkneQ9VrEBBzrKsCBgQ3JuQoXPTwlZEFzG1lBlzOPMCM8FDhFnbpmrBFeojO7yd4t3pQi1eR/09EO2zlNMfj1m9iFND3RNL3RHN/RE77/2qoY9Ai37vGo1rnDXE0c9i2//sixeJbY/WX9qltjEeKjVYO1uiAS30Gv8ysHJy+LEQro6QJf0zPov6JFu+QZ25VW/mhcL53/o0VhL8MfSv1ZI7PF8J3TAxyFbmf1u3M+kmMtkhzO5+ZHU1ExkajN60Y9Bdm4MU5hDHgWes4NjnOJMGVVKiqZs1EqVWMTpxpdQrA99gJpi</latexit> B<0 のとき V %で ⌧ & <latexit sha1_base64="FBwjGVsXNuFsiYr++dS5F9jSKqQ=">AAACt3ichVE9S8NQFD2N3/WjVRfBpVgqTuVVBT8m0cWxVduKbSlJfNXQNInJa7WW/gFnwUEUFBzEn+Hi4OrQnyCOCi4O3qQB0aLekLz7zrvn3vNyFEvXHMFYKyB1dff09vUPBAeHhkdC4dGxjGNWbZWnVVM37W1FdriuGTwtNKHzbcvmckXReVYpr7nn2Rq3Hc00tkTd4oWKvGdoJU2VBUE7mbzBZds2D4PFcJTFmReRziThJ1H4kTTDj8hjFyZUVFEBhwFBuQ4ZDj05JMBgEVZAgzCbMs0752giSNwqVXGqkAkt03ePdjkfNWjv9nQ8tkpTdHptYkYQY0/slr2yB3bHntnHr70aXg9XS51Wpc3lVjF0MrH5/i+rQqvA/hfrT80CJSx6WjXSbnmIewu1za8dn71uLm/EGtPsmr2Q/ivWYvd0A6P2pt6k+Mb5H3oU0uL+sdivFQJHNN/0HHDQJCsTP43rTDKz8cRcfDY1H11Z9U3txySmMEPOLWAF60giTXMMnOICl9KSVJRK0n67VAr4nHF8C+ngEwnEnR4=</latexit> <latexit sha1_base64="c1R3ZgklntjzPxO93IZAfMO3Hck=">AAACuXichVFNLwNRFD3GV3222EhsRFOxal5LQtg0bCzro0hU5M142tHpzGTea6mmf8APYGHhI7EQP8PGwtbCTxBLEhsLd6aTCII7mXn3nXfPvefN0V3LlIqxxxatta29ozPS1d3T29cfjQ0Mrkmn4hkiZziW423oXArLtEVOmcoSG64neFm3xLpeWvDP16vCk6Zjr6qaK7bKvGCbu6bBFUH5vOKVvBTc85z97VicJVkQoz+TVJjEEUbWid0jjx04MFBBGQI2FOUWOCQ9m0iBwSVsC3XCPMrM4FyggW7iVqhKUAUntETfAu02Q9Smvd9TBmyDplj0esQcRYI9sGv2wu7YDXti77/2qgc9fC01WvUmV7jb0aPhlbd/WWVaFYqfrD81K+xiJtBqknY3QPxbGE1+9fDkZWV2OVEfZ5fsmfRfsEd2Szewq6/G1ZJYPv1Dj05a/D+W+LVC4YDmO4EDEg2yMvXduJ/JWjqZmkyml6bimfnQ1AhGMIYJcm4aGSwiixzNcXGMM5xrcxrXitpes1RrCTlD+BKa/ABUZJ59</latexit> 速度弱化 空間不均一な摩擦パラメータの場合の運動の特徴づけ 地震研 サマースクール c 伊藤伸一 06/21

8.

断層運動モデル 準静的境界要素モデル ・豊後水道 スロースリップ発生域の断層運動のモデル Hirahara et al. (2019) Ground Vlock <latexit sha1_base64="2w2ME6BdKlnLWFQGtTi3j4V/QSA=">AAACtnichVG5TsNAEH2YOxwJ0CDRRERBVNGGJCRQIWgouRJAHJFtlmDFl+xNBET5AVoKCqAAiQLxGTQUtBT5BEQZJBoKxo4RogiMZe/s23kzb/0UW9dcwVijQ+rs6u7p7esPDQwODYcjI6MF16o4Ks+rlm45W4rscl0zeV5oQudbtsNlQ9H5plJe8s43q9xxNcvcECc23zPkkqkdaqosCNouFGu6pZbroWIkxhJzmUw2PRttJclskKRS0WSC+RFDECtW5Bm7OIAFFRUY4DAhKNchw6VnB0kw2ITtoUaYQ5nmn3PUESJuhao4VciElulbot1OgJq093q6PlulKTq9DjGjiLMXds+a7Ik9sFf22bZXze/haTmhVWlxuV0Mn42vf/zLMmgVOPph/alZ4BA5X6tG2m0f8W6htvjV04vm+vxavDbFbtkb6b9hDfZINzCr7+rdKl+7/EOPQlq8PxZvWyFwTPMt3wEXdbLy269o+6Qwk0imEjOr6djCYmBqHyYwiWlyLosFLGMFeZpj4BxXuJZy0r7EpVKrVOoIOGP4FZL9BfWinSA=</latexit> Vplate <latexit sha1_base64="Po4sH//aC+eoS63qoc56tPYapl8=">AAACt3ichVE9T8JQFD3Wb/xCXUxciATjRB4Cok5EF0dBQaMS0tYHNpa2tg8iEv6As4mD0UQTB+PPcHFwdfAnGEdNXBy8LTXGAbxN++477557z+tRLF1zBGMvXVJ3T29f/8BgYGh4ZHQsOD6Rd8yqrfKcauqmva3IDtc1g+eEJnS+bdlcrig631IOV93zrRq3Hc00NkXd4oWKXDa0kqbKgqCdfLFh6bLgzUAxGGbRpWQylVgItZJYyk/i8VAsyrwIw491M/iEPezDhIoqKuAwICjXIcOhZxcxMFiEFdAgzKZM8845mggQt0pVnCpkQg/pW6bdro8atHd7Oh5bpSk6vTYxQ4iwZ3bH3tkju2ev7Kttr4bXw9VSp1VpcblVHDud2vj8l1WhVeDgl9VRs0AJi55WjbRbHuLeQm3xayfn7xvL2Uhjlt2wN9J/zV7YA93AqH2otxmeveigRyEt7h+LtK0QOKb5pueAgyZZ+eNXqH2Sn4/G4tH5TCKcXvFNHcA0ZjBHzqWQxhrWkaM5Bs5wiStpSSpKJemgVSp1+ZxJ/Anp6BsYu52X</latexit> 6.5km 0.5km / yr / yr Obara et al. (2016) 断面図 鳥瞰図 0Z ⌧t (x) = A(x) log (Vt (x)) + B(x) log (✓t@⌧ (x)) + ⌧ (x) t (x) = dx0 g(x, x0 ) (V Vt (x0 )) + K :グリーン関数 plate Z @⌧ (x) Z @t t @⌧t (x) G @VVt (x)) G 0 0 0 0 0 0 = dx g(x, x ) (V V (x )) + K(x) (V :上部プレート lock EOM = dx @tg(x, x ) (Vplate Vt (x ))plate + K(x)t (Vplate Vlock ) plate 2c @t 2c @t からのグリーン Z x) G @Vt (x) 関数 = dx0 g(x, x0 ) (Vplate Vt (x0 )) + K(x) (Vplate Vlock ) G :剛性率 2c @t c :音速 Vt (x)✓t (x) Aging @✓t (x) =1 Law @t L(x) RSDF <latexit sha1_base64="dxt0v5IQrn2jXj1FucQYrVGdwmM=">AAADNnichVFLS9xQFD5Ja6v2MdO6EVQIDlNGCsMZK1gKgrUbl75mFIwOSbwzc/HmQXJnUEPWgn+gi64qdCH+ge7duHDbhZvuSikiFCx046InmRQf4+OG5J77ne8757s5pid4IBGPFfXBw65Hj7t7ep88ffY8k33xshK4Td9iZcsVrr9kGgET3GFlyaVgS57PDNsUbNFc/xDnF1vMD7jrLMhNj63YRt3hNW4ZkqBqdluXRrMayqigm3a4EY1oE9r7/7Eu3LouWE0WKpcpus/rDTmivdamOpm6bDBp3EyPe62GGKXMJJ1mq9kcFjFZWmdQSoMcpGvGzR6BDmvgggVNsIGBA5JiAQYE9CxDCRA8wlYgJMyniCd5BhH0krZJLEYMg9B1+tbptJyiDp3jmkGitqiLoNcnpQZ5/IZ7eIaHuI+/8PzWWmFSI/aySbvZ1jKvmtnpn/97r8qmXULjQnWnZwk1eJt45eTdS5D4FlZb39r6eDb/bi4fvsJdPCH/n/EYD+gGTuuP9WWWzX26w49JXuI/lr+VIWGD+rvJBAKIaJSl64PrDCqjxdKb4ujsWG5yKh1qNwzAMBRocuMwCdMwA2Xqc6r0KYPKkPpV/a7+UH+2qaqSavrgylJ//wMAps00</latexit> <latexit sha1_base64="PuBoeaGTTzMtIQIP660G3eKSE9Y=">AAADjXichVHLbtNAFL2ueZTwSIANEpsRUWgiaDRJi0C8VAFSkdj0QdxKdWWNp5N0yMS27EnUYs0P8AMsWIHEAvEZbFiwZdENe8SySGxYcOO4KrSkHcueO+eec+8ZXz9SMtGU7lgT9omTp05PnimcPXf+QrF08ZKThP2YixYPVRiv+iwRSgaipaVWYjWKBev5Sqz43cfD/MpAxIkMg+d6OxLrPdYJZFtyphHySt/cdsx46kYs1pIp4mrW91Jtqq7fS7dMzeyntCEPSMGVgSYbo+yUe490cubNHKq5SrR1lTheGimmhZl2/qo3VSNuLDubula4QZ7tNfmfRIW8a/bIZJqMfM6btMnNAc/OWMMFr1SmdZotcjho5EEZ8rUQlr6ACxsQAoc+9EBAABpjBQwSfNagARQixNYhRSzGSGZ5AQYKqO0jSyCDIdrFbwdPazka4HlYM8nUHLsofGNUEqjQr/QD3aWf6Uf6nf4eWyvNagy9bOPuj7Qi8oqvriz/OlbVw13D5r7qSM8a2nAn8yrRe5Qhw1vwkX7w8vXu8t2lSnqdvqM/0P9bukM/4Q2CwU/+flEsvTnCj49ehn+sMpahYQv7h9kEEjA4ysbBwR0OnGa9MVNvLs6W5x7lQ52Eq3ANqji52zAHT2EBWsCtJ9YLK7G0XbRv2ffthyPqhJVrLsM/y57/A6bs6m0=</latexit> <latexit sha1_base64="PuBoeaGTTzMtIQIP660G3eKSE9Y=">AAADjXichVHLbtNAFL2ueZTwSIANEpsRUWgiaDRJi0C8VAFSkdj0QdxKdWWNp5N0yMS27EnUYs0P8AMsWIHEAvEZbFiwZdENe8SySGxYcOO4KrSkHcueO+eec+8ZXz9SMtGU7lgT9omTp05PnimcPXf+QrF08ZKThP2YixYPVRiv+iwRSgaipaVWYjWKBev5Sqz43cfD/MpAxIkMg+d6OxLrPdYJZFtyphHySt/cdsx46kYs1pIp4mrW91Jtqq7fS7dMzeyntCEPSMGVgSYbo+yUe490cubNHKq5SrR1lTheGimmhZl2/qo3VSNuLDubula4QZ7tNfmfRIW8a/bIZJqMfM6btMnNAc/OWMMFr1SmdZotcjho5EEZ8rUQlr6ACxsQAoc+9EBAABpjBQwSfNagARQixNYhRSzGSGZ5AQYKqO0jSyCDIdrFbwdPazka4HlYM8nUHLsofGNUEqjQr/QD3aWf6Uf6nf4eWyvNagy9bOPuj7Qi8oqvriz/OlbVw13D5r7qSM8a2nAn8yrRe5Qhw1vwkX7w8vXu8t2lSnqdvqM/0P9bukM/4Q2CwU/+flEsvTnCj49ehn+sMpahYQv7h9kEEjA4ysbBwR0OnGa9MVNvLs6W5x7lQ52Eq3ANqji52zAHT2EBWsCtJ9YLK7G0XbRv2ffthyPqhJVrLsM/y57/A6bs6m0=</latexit> <latexit sha1_base64="PuBoeaGTTzMtIQIP660G3eKSE9Y=">AAADjXichVHLbtNAFL2ueZTwSIANEpsRUWgiaDRJi0C8VAFSkdj0QdxKdWWNp5N0yMS27EnUYs0P8AMsWIHEAvEZbFiwZdENe8SySGxYcOO4KrSkHcueO+eec+8ZXz9SMtGU7lgT9omTp05PnimcPXf+QrF08ZKThP2YixYPVRiv+iwRSgaipaVWYjWKBev5Sqz43cfD/MpAxIkMg+d6OxLrPdYJZFtyphHySt/cdsx46kYs1pIp4mrW91Jtqq7fS7dMzeyntCEPSMGVgSYbo+yUe490cubNHKq5SrR1lTheGimmhZl2/qo3VSNuLDubula4QZ7tNfmfRIW8a/bIZJqMfM6btMnNAc/OWMMFr1SmdZotcjho5EEZ8rUQlr6ACxsQAoc+9EBAABpjBQwSfNagARQixNYhRSzGSGZ5AQYKqO0jSyCDIdrFbwdPazka4HlYM8nUHLsofGNUEqjQr/QD3aWf6Uf6nf4eWyvNagy9bOPuj7Qi8oqvriz/OlbVw13D5r7qSM8a2nAn8yrRe5Qhw1vwkX7w8vXu8t2lSnqdvqM/0P9bukM/4Q2CwU/+flEsvTnCj49ehn+sMpahYQv7h9kEEjA4ysbBwR0OnGa9MVNvLs6W5x7lQ52Eq3ANqji52zAHT2EBWsCtJ9YLK7G0XbRv2ffthyPqhJVrLsM/y57/A6bs6m0=</latexit> <latexit sha1_base64="tLE3G+FpnbaUzVr1rrldwdtX70g=">AAACr3ichVFNLwNRFD0d3/VVbCQ2jaZi1bxBQqyEBcsqVYnPmfFaL+YrM68Nmv4BscXCisRC/AwbC1sLP0EsSWws3JlOIkjrTmbefefdc+95c3TXFL5k7DmmtLS2tXd0dsW7e3r7+hMDg2u+U/YMnjcc0/HWdc3nprB5Xgpp8nXX45qlm7ygHywE54UK93zh2KvyyOVbllayRVEYmiQotxjfSaRYhoWR/JuoUZJCFFkn8YhN7MGBgTIscNiQlJvQ4NOzARUMLmFbqBLmUSbCc44a4sQtUxWnCo3QA/qWaLcRoTbtg55+yDZoikmvR8wk0uyJ3bI39sDu2Av7bNirGvYItBzRqte53N3pPxle+fiXZdEqsf/NaqpZooiZUKsg7W6IBLcw6vzK8cXbymwuXR1j1+yV9F+xZ3ZPN7Ar78bNMs9dNtGjk5bgj6UbVkgc0nwndMBHjaxUfxv3N1mbyKiTmYnlqdTcfGRqJ0YwinFybhpzWEIWeZpTxCnOcK6oSkHZVnbrpUos4gzhRyjiC/vlmWU=</latexit> <latexit sha1_base64="f6SCGutV9cL+qeOpUsTM6whl4Q0=">AAACr3ichVE9S8NQFD3Gr1q/qi6Ci1gqTuWlCoqT6OJYq/0AP5P4qo+mSUhei7X0D4irOjgpOIg/w8XB1aE/QRwruDh4kwZERb0hefedd8+95+Xojik8yVizQ+ns6u7pjfRF+wcGh4ZjI6M5z664Bs8atmm7BV3zuCksnpVCmrzguFwr6ybP66UV/zxf5a4nbGtD1hy+XdYOLFEUhiYJyhjR3VicJVkQkz8TNUziCCNtxx6xhX3YMFBBGRwWJOUmNHj0bEIFg0PYNuqEuZSJ4JyjgShxK1TFqUIjtETfA9pthqhFe7+nF7ANmmLS6xJzEgn2xG5Ziz2wO/bM3n/tVQ96+FpqtOptLnd2h0/G19/+ZZVplTj8ZP2pWaKIhUCrIO1OgPi3MNr86vFFa30xk6hPs2v2QvqvWJPd0w2s6qtxs8Yzl3/o0UmL/8cSv1ZIHNF8O3DAQ4OsVL8b9zPJpZLqbDK1NhdfWg5NjWACU5gh5+axhFWkkaU5RZziDOeKquSVHWWvXap0hJwxfAlFfAA8KJmB</latexit> <latexit sha1_base64="UoDujNyuXncqJwCG/86TAh40YX8=">AAADEnichVFNS9xQFD1G26r9cLQbwU3oMGIXHV60YCkIUjcuXPg1o2BkeHl9ow/zRfJmUEP+QNeFLrpS6KL0H3Qnblpw24U/QbrowkJb6MKbTFBbq30heeede8+95+U6oatizdhxl9Hdc+v2nd6+/rv37j8YKA0O1eOgFQlZE4EbRKsOj6WrfFnTSrtyNYwk9xxXrjhbM1l8pS2jWAX+st4J5brHN3zVVIJroholYTcjLhI75JFW3LX1ptS8keh0zHa8ZDt9nJ7HTJ2aU6b1pKOoX076l2zuHDZKZVZl+TKvAqsAZRRrPigdwcZLBBBowYOED03YBUdMzxosMITErSMhLiKk8rhEin7StihLUgYndou+G3RaK1ifzlnNOFcL6uLSG5HSRIV9Ye/ZKfvEPrAT9vvaWkleI/OyQ7vT0cqwMfBqeOnHf1Ue7RqbF6obPWs08Sz3qsh7mDPZLURH3959c7r0fLGSjLJ99pX877Fjdkg38NvfxbsFufj2Bj8Oecn+WOXaDI1t6h/kE4iRjdL6e3BXQX28ak1UxxeelqdfFEPtxQgeYYwmN4lpzGIeNerzGd/wE7+M18ZH48A47KQaXYXmIf5YxtEZn97Ddw==</latexit> 地震研 サマースクール c 伊藤伸一 07/21

9.

沈み込み方向すべり速さの時間発展 5∘ 120km / yr km 15∘ 6.5 m 35 k 100 25km Locked km 沈み込み 方向 Parameters A(x) = 100 [kPa] { B(x) = 135 [kPa] B(x) = 30 [kPa] <latexit sha1_base64="ojr6/pvwkvKumYFJoSJi4bZFi0w=">AAAH1HiclZVPT9RAGMZfQC3iH0AvJl4alzWeNrMElHgiaghHWNxlCYuk7U7Xhm7btN11oerFeDHGm3rwpIkH48fw4hfwwEcwHjHx4sGn08KCycJLN9uZeed5fvPOTDpjBq4TxULsDg2PnDl7Ths9P3bh4qXL4xOTV2qR3wktWbV81w/rphFJ1/FkNXZiV9aDUBpt05Wr5tb9tH+1K8PI8b2H8XYgN9pGy3NsxzJihCqNZHOiIErTYm529raeV8R+ZUYvl4R6CpQ/S/7kyCNqUJN8sqhDbZLkUYy6SwZF+K1TmQQFiG1QgliImqP6JT2jMXg7UEkoDES38G6htZ5HPbRTZqTcFkZx8Q/h1KkofogvYk98F1/FT/F3ICtRjDSXbZRm5pXB5virayt/TnS1Ucb0uO86NueYbJpTuTrIPVCRdBZW5u/uvN9buVspJjfFJ/EL+X8Uu+IbZuB1f1ufl2XlA+jFgRnF1APfVysc5avXRI+NsksPoGioGfrQpXVTrVfzYA46TUE1BWfm9eB9ola1rTQetIli9aDg0HosWsikhczcHCavobQcpqt220TbYLMPezhjpE6JN3+EvoPDPx37KPd4ss2k2qw8A6j5O5ipOdw1JnONRVtg0hZYtDqTVmfRFpm0RRZtBz0h4jymYDDTU76lIv1zJCP42M+0HSKi57rnB8r0m3LQcg6dbyeNkZ6zvDEy5X9j4L7bv9T0wZXadKksSuXlmcL8vfzmG6XrdINu4Xa7Q/NY6SWqIkubXtNbeqfVtKfaC+1lJh0eyj1X6cijvfkH9RycRA==</latexit> L(x) = 22 [mm] 実際のパラメータの値やパラメータの不確実性などはよく分からない (地下深く掘って調べるなどは非現実的) → 観測可能な量を使って間接的に調べるアプローチが必要 地震研 サマースクール c 伊藤伸一 08/21

10.

Outline 1. 導入:断層すべりと摩擦特性 2. 手法:変分法データ同化 3. 解析:摩擦空間特性の不確実性評価 4. まとめ 地震研 サマースクール c 伊藤伸一 09/21

11.
[beta]
データ同化
モデル
<latexit sha1_base64="9Cy5FDqhVcuvIh7OEYFm+wU107A=">AAACu3ichVFNLwNRFD3Gd30VG4lNo6nUpnlFQiQSwcKySpFQzcx4eMxXZl6bVtM/4A+QWGliIX6GjYWthZ8gliQ2Fu5MJxGacicz777z7rn3vDmaYwhPMvbcprR3dHZ19/RG+voHBoeiwyNbnl10dZ7TbcN2dzTV44aweE4KafAdx+WqqRl8Wztd8c+3S9z1hG1tyorD86Z6ZIlDoauSoH0nWS5UZW3PFAex1alCNM5SLIhYc5IOkzjCyNjRR+zhADZ0FGGCw4Kk3IAKj55dpMHgEJZHlTCXMhGcc9QQIW6RqjhVqISe0veIdrshatHe7+kFbJ2mGPS6xIwhwZ7YLXtjD+yOvbDPlr2qQQ9fS4VWrcHlTmHofGzj41+WSavE8TfrT80Sh5gPtArS7gSIfwu9wS+dXbxtLGQT1UlWZ6+k/5o9s3u6gVV612/WefbqDz0aafH/WKJlhUSZ5tuBAx5qZGX6t3HNydZ0Kj2Tml6fjS8th6b2YBwTSJJzc1jCGjLI0RwXl7hGXVlUdOVEMRqlSlvIGcWPUIpfmGCeig==</latexit>

事後分布

データ

p(xt | D)

D = {D1 , D2 , ...}

予測の高精度化、

<latexit sha1_base64="9Cy5FDqhVcuvIh7OEYFm+wU107A=">AAACu3ichVFNLwNRFD3Gd30VG4lNo6nUpnlFQiQSwcKySpFQzcx4eMxXZl6bVtM/4A+QWGliIX6GjYWthZ8gliQ2Fu5MJxGacicz777z7rn3vDmaYwhPMvbcprR3dHZ19/RG+voHBoeiwyNbnl10dZ7TbcN2dzTV44aweE4KafAdx+WqqRl8Wztd8c+3S9z1hG1tyorD86Z6ZIlDoauSoH0nWS5UZW3PFAex1alCNM5SLIhYc5IOkzjCyNjRR+zhADZ0FGGCw4Kk3IAKj55dpMHgEJZHlTCXMhGcc9QQIW6RqjhVqISe0veIdrshatHe7+kFbJ2mGPS6xIwhwZ7YLXtjD+yOvbDPlr2qQQ9fS4VWrcHlTmHofGzj41+WSavE8TfrT80Sh5gPtArS7gSIfwu9wS+dXbxtLGQT1UlWZ6+k/5o9s3u6gVV612/WefbqDz0aafH/WKJlhUSZ5tuBAx5qZGX6t3HNydZ0Kj2Tml6fjS8th6b2YBwTSJJzc1jCGjLI0RwXl7hGXVlUdOVEMRqlSlvIGcWPUIpfmGCeig==</latexit>

p(xt | D)

逆問題、…
天気予報

出典:Google Earth
地震研 サマースクール

<latexit sha1_base64="uqBeDhpsi6lxGlvwkHHdVQpc2sc=">AAACxnichVFNS8NAEH3G7/pV9aDgpVgqHiRsqqAIgqgHj61aFayUJG41mCYh2daPUPDsH/DgScWDqL/CiwevHvwJ4rGCFw9O0oCoqLPs7uzbebNvdjTHNDzB2FOD1NjU3NLa1h7r6Ozq7on39q16dtnVeU63Tdtd11SPm4bFc8IQJl93XK6WNJOvabvzwf1ahbueYVsr4sDhmyV12zKKhq4KggrxgYXETCLvLxR8pTpGa7o6JstyvlqIJ5nMQkv8dJTISSKyjB1/QB5bsKGjjBI4LAjyTajwaGxAAYND2CZ8wlzyjPCeo4oYccsUxSlCJXSX1m06bUSoRecgpxeydXrFpOkSM4EUe2RXrMbu2TV7Zu+/5vLDHIGWA9q1Opc7hZ7jweW3f1kl2gV2Pll/ahYoYirUapB2J0SCKvQ6v3J4UlueXkr5I+ycvZD+M/bE7qgCq/KqX2b50ukfejTSEvxY6tcIgX163w474CFopfK9cT+d1bSsjMvp7ERydi5qahuGMIxR6twkZrGIDHJhBRe4wa20KFlSWdqrh0oNEacfX0w6+gAO/6ED</latexit>

実験・観測デザインの
最適化

地震学

Kano et al. (2015)

材料科学

Ito et al. (2017)

c 伊藤伸一

10/21

12.

変分法データ同化 モデルの初期値の事後分布の情報(例えばMAP解など)を効率的に抽出する手法 Dデータと + !t t = h(xt )の関係 Dt = h(xt ) + !t シミュレーションモデル <latexit sha1_base64="yXpqNkT0w6ffWorbjXV9yQ9bbtU=">AAACzHichVE9S8NQFD3G789WXQQRgqWiCOVVBUUQRB2cRK3VQpWSxGcN5ovktaihk+DgH3BwUnAQN/0JLg6uDv0J4qjg4uBNGhAV9YXknXvePfeel6s6hu4Jxqp1Un1DY1NzS2tbe0dnVyze3bPu2SVX41nNNmw3pyoeN3SLZ4UuDJ5zXK6YqsE31L354HyjzF1Pt601ceDwLVMpWvqOrimCqEJ8YKHgi4o8I+8O7wdoRB6VN22TF5UgKsQTLMXCJf8E6QgkEK1lO/6ATWzDhoYSTHBYEIQNKPDoySMNBoe4LfjEuYT08JyjgjbSliiLU4ZC7B59ixTlI9aiOKjphWqNuhj0uqSUkWSP7Iq9sHt2zZ7Y+6+1/LBG4OWAdrWm5U4hdtKXeftXZdIusPup+tOzwA6mQq86eXdCJriFVtOXD09fMtOrSX+IXbBn8n/OquyObmCVX7XLFb569ocflbwEfyz5a4bAPvW3wwl4CEaZ/j64n2B9LJUeT42tTCRm56KhtqAfgximyU1iFotYRpb6HOEKN7iVliQh+VKllirVRZpefFnS8QeM6KR2</latexit> <latexit sha1_base64="yXpqNkT0w6ffWorbjXV9yQ9bbtU=">AAACzHichVE9S8NQFD3G789WXQQRgqWiCOVVBUUQRB2cRK3VQpWSxGcN5ovktaihk+DgH3BwUnAQN/0JLg6uDv0J4qjg4uBNGhAV9YXknXvePfeel6s6hu4Jxqp1Un1DY1NzS2tbe0dnVyze3bPu2SVX41nNNmw3pyoeN3SLZ4UuDJ5zXK6YqsE31L354HyjzF1Pt601ceDwLVMpWvqOrimCqEJ8YKHgi4o8I+8O7wdoRB6VN22TF5UgKsQTLMXCJf8E6QgkEK1lO/6ATWzDhoYSTHBYEIQNKPDoySMNBoe4LfjEuYT08JyjgjbSliiLU4ZC7B59ixTlI9aiOKjphWqNuhj0uqSUkWSP7Iq9sHt2zZ7Y+6+1/LBG4OWAdrWm5U4hdtKXeftXZdIusPup+tOzwA6mQq86eXdCJriFVtOXD09fMtOrSX+IXbBn8n/OquyObmCVX7XLFb569ocflbwEfyz5a4bAPvW3wwl4CEaZ/j64n2B9LJUeT42tTCRm56KhtqAfgximyU1iFotYRpb6HOEKN7iVliQh+VKllirVRZpefFnS8QeM6KR2</latexit> 初期値 x0 = ✓ h:観測演算子 事後分布 p(✓ | D) / p(✓) <latexit sha1_base64="oWi9GfktOIkXj88PGSyzQpA7glc=">AAAO03iclZfPTxNBFMcf+AurFtCLiZeNgGkPkCkaJZ5AGgIn+Q2BxabbDu2G7e6yu60LTT0YTyaePXjSxIPxrP+AF/8BD8SrHoxHTLx48M10aQud0scSdmffvM/3+2Y6284armX6AWMHPb3nzl+4eKnvcuzK1Wvx/oHB66u+U/ZyfCXnWI63bmR9bpk2XwnMwOLrrsezJcPia8bOtOhfq3DPNx17Odhz+VYpW7DNbTOXDTCUGXjsJvSgyIOsXjLzWjqp6a7nuIGjHcXrkXymGuimrS0/qeoBD4OqY/i1Wk3bTaSxpzZaTITimkxmBobYGJOH1t5IRY0hiI55Z/DiZ9AhDw7koAwl4GBDgG0LsuDj3yakgIGLsS2oYszDlin7OdQghmwZszhmZDG6g+cC3m1GURvvhaYv6Ry6WPjvIanBCPvGPrBD9pV9ZL/Yv45aVakhatnDq1FnuZvpf3lz6W9XSsNzFmsuNrlTqw5gGyZktSZW78qIGEeuzlf2Xx8uPVwcqd5h79hvHMFbdsC+4Bjsyp/c+wW++AbVRzrWFECI+o6cY/9YRaImG3Oeylkqyapt/FyqGBezXpCREBkRORqTgw7i3sOIFuU9a2TqONsm3pmRG8VDjJrmUc9s94jJ9cRxnDpU8JqDBAzhKkpGqgYqhrJtyPWQbzhpMCwzh1GndkInJNGhkt0jsXtKdp/E7ivZMoktK1mPxHpK1iCxhpJ1SayrZHdJ7K6S9Umsr2SLJLaoZGdJ7KySnSax00o2TWLTSnaGxM4o2TkSO6dkN0jshpJdJ7HrSnaKxE51eH45PiUOSYEpFRz5C1bAPIqG3pKvXudm9F1OU2vmq9REHsczVa2Zr1Kz5G+mgRGqXivRafbp1e2fUluI80BTEZkqhbNU0rmOEvFbXZeZKoWCnDP6Cmjmq0flyjViyV0FdXStjEp1uWVd1XW2kdVb4u1MnuSeV/ottTwVrX7NeK2xt+i0gxH7E0f21hr3CbwWcaz1fZjYgY3h/mICWyXMMk/tTXbZMQn9AHucLn6sxU/lyM7oWMQrPzHKdt3RE87d+ineYudalrt3unOlQ//9M4x5G10qXT/Xpma751kdxdMRnuo32sVRPb8xfD9LnXwba2+sjo+l7o6NL9wbmnwUvan1wS24jXWk4AFM4n5kHlbQ6RN8hx/wM74Sr8afx1/UU3t7IuYGHDvir/4DH+D0sg==</latexit> p(✓):事前分布 <latexit sha1_base64="WGN2PBPUYctwd9zIQsrpAM3Un4c=">AAAJE3iclZbLbtNAFIZPWy4mXNrCBolNRFpUNtGkIIFYVVBV7a5tmja0ripfJolV3+RL1CbqC7BFiAWwAIkF4hHYAQs2LFn0ERDLIiEhFhyPLWyaSTk4iuf4zPn++Wds2aP7thVGjB2OjI6dOn3mrHKudP7CxUvjE5OX10MvDgzeMDzbC5q6FnLbcnkjsiKbN/2Aa45u8w1990HSv9HlQWh57lq07/NtR2u7VssytAhTD/0ZNerwSLu5M1FhVSaO8mBQy4IKZMeyNzn2E1QwwQMDYnCAgwsRxjZoEOJvC2rAwMfcNvQxF2BkiX4OB1BCNsYqjhUaZnfx3MarrSzr4nWiGQrawFFs/AdIlmGafWFv2BH7xN6yr+zXUK2+0Ei87GOrpyz3d8YfXa3/+CflYBtBJ6dO9BxBC+4KrxZ690UmmYWR8t3e06P6vdXp/g32in1D/y/ZIfuAM3C7343XK3z1mVA3kWlh24U9VFKFay+LdbEG5h9fZZjCninUPzjGxiQ2lrIBiQ2krE5idSnrk1hfyoYkNpSyHRLbkbKLJHZRys6T2Hkpu0BiF6TsEoldkrKbJHZTyjZJbFPK9jAKsJqiwKQKnniXtLGOoqEW6uXPm4V9Dlktr5epJXUcz1S1vF6mZou3l44Zql6RGLb6dHe9E7zt4TrQVJJKmcL/OBnuoy1mTL9/eb3cky/ucPJ9csneioxMda3wVKQ6LWTVQn6QMUmjm9Lx6oVnujhenk+ZEu4Tasd3BYPB+my1dqs6u3K7Mnc/2zEocA2uwwzuCu7AHL4Vl6GBX0cHHsNzeKE8Ud4p75WPaenoSMZcgb8O5fNvcpbRNQ==</latexit> ノイズ <latexit sha1_base64="9gygmdn+QQW5JH9b9JNHqm5Ff9o=">AAACrnichVE9S8NQFD3Gr/pddRFcxFJxKrcqKE5FF0ertgq1lCS+tqFpEpLXYi39A7oqDk4KDuLPcHFwdfAniKOCi4M3aUC0qDck777z7rn3vBzNMQ1PEj11Kd09vX39kYHBoeGR0bHo+ETWs2uuLjK6bdrunqZ6wjQskZGGNMWe4wq1qpliV6us++e7deF6hm3tyIYj8lW1ZBlFQ1clQ+lyIRqjBAUx05kkwySGMDbt6AP2cQAbOmqoQsCC5NyECo+fHJIgOIzl0WTM5cwIzgVaGGRujasEV6iMVvhb4l0uRC3e+z29gK3zFJNfl5kziNMj3dAr3dMtPdPHr72aQQ9fS4NXrc0VTmHseGr7/V9WlVeJ8hfrT80SRawEWg3W7gSIfwu9za8fnb9ur27Fm3N0RS+s/5Ke6I5vYNXf9Ou02Lr4Q4/GWvw/Fv+1QuKQ59uBAx5abGXyp3GdSXYhkVxMLKSXYqm10NQIpjGLeXZuGSlsYBMZniNwglOcKaRklbxSaJcqXSFnEt9CKX8CCqmZcg==</latexit> <latexit sha1_base64="3tnKdZhOroykKE9AkYQLgeiHt+E=">AAACuXichVHLSsNQED2Nr1pfVTeCG7FUXJVpFRRFEN249FUVrJQkXm00TUJyW1pLf8AP0IULH+BC/Aw3Lty66CeISwU3LpykAVFRJyR37rlzZs7N0RzT8CRRI6K0tLa1d0Q7Y13dPb198f6BDc8uubrI6rZpu1ua6gnTsERWGtIUW44r1KJmik3tcNE/3ywL1zNsa11WHbFTVPctY8/QVclQrpKvUX0uJwtCqvl4glIUxMjPJB0mCYSxbMcfkMMubOgooQgBC5JzEyo8fraRBsFhbAc1xlzOjOBcoI4Yc0tcJbhCZfSQv/u82w5Ri/d+Ty9g6zzF5Ndl5giS9Eg39EL3dEtP9P5rr1rQw9dS5VVrcoWT7zseWnv7l1XkVaLwyfpTs8QepgOtBmt3AsS/hd7kl49OX9ZmVpO1MbqiZ9Z/SQ264xtY5Vf9ekWsnv2hR2Mt/h9L/lohUeH5duCAhzpbmf5u3M9kI5NKT6QyK5OJ+YXQ1CiGMYpxdm4K81jCMrI8x8EJznGhzCqqUlAOmqVKJOQM4kso3geL4p4m</latexit> <latexit sha1_base64="BVEjgQf0iX35/BBzir1DM3XQaXQ=">AAACyXichVE9LwRRFD3G9+cuGqHZ2KzQbN4iISqhkWh8LRIrm5nxrBdvPsy83WCziUTnDyhUJCSi4D9oFFqFnyBKEo3CndlJBMGdzLz7zrvn3vPmGK4UvmLssUarratvaGxqbmlta++IxTu7ln2n6Jk8azrS8VYN3edS2DyrhJJ81fW4bhmSrxjb08H5Sol7vnDsJbXn8nVLL9hiU5i6Iigf7805Fi/o+bKqJHK+sBI7gzmjKCVXQ/l4kqVZGImfSSZKkohizonfI4cNODBRhAUOG4pyCR0+PWvIgMElbB1lwjzKRHjOUUELcYtUxalCJ3SbvgXarUWoTfugpx+yTZoi6fWImUCKPbBL9sLu2BV7Yu+/9iqHPQIte7QaVS5387GjnsW3f1kWrQpbn6w/NStsYjzUKki7GyLBLcwqv7R//LI4sZAqD7Az9kz6T9kju6Ub2KVX83yeL5z8occgLcEfS/1aobBL853QAR8VsjLz3bifyfJwOjOSHp4fTU5ORaY2oQ/9GCTnxjCJGcwhS3MOcIFr3Giz2o62q+1XS7WaiNONL6EdfgAiXKPw</latexit> Y q(Dt !t ⇠ q(•) h(xt )) t2T obs MAP解 T obs:観測時刻のセット <latexit sha1_base64="SMmXtD5Kzifn6YlK+hRImb/o8g8=">AAAJGHiclZbLbtNAFIZPWy4mXNrCBolNRFrEKpoUJKquKqiqdtc2SRu1aSvbmSRWfZM9idJEeQFeAASrVmKBeAkkFsAWiUUfAbEsEhJiwfHYIqaZlFNH8RyfOd8//4wtewzftkLB2MnY+MSly1euatcy12/cvDU5NX17M/RagcnLpmd7QcXQQ25bLi8LS9i84gdcdwybbxkHz6L+rTYPQstzS+LQ57uO3nCtumXqAlN7pb1eVfCO6HlG2O/vT+VYnskjOxwUkiAHybHmTU/8girUwAMTWuAABxcExjboEOJvBwrAwMfcLvQwF2BkyX4Ofcgg28IqjhU6Zg/w3MCrnSTr4nWkGUraxFFs/AdIZmGWfWVv2Sn7xN6xb+z3SK2e1Ii8HGJrxCz39yef3y3+/C/lYCugOaDO9SygDvPSq4XefZmJZmHGfLv74rS4sDHbe8CO2Xf0f8RO2Aecgdv+Yb5Z5xuvpXoNmTq2beigUlW69pLYkGtQ++srCzPYM4P6/TNsi8S2lGxAYgMla5BYQ8n6JNZXsiGJDZVsk8Q2lewKiV1RskskdknJLpPYZSW7SmJXlew2id1WshUSW1GyXYwCrKYoMKWCJ98lDayjaFRT9ernzcI+h6w2qFepRXUcz1S1Qb1KzZZvLwMzVL00MWr16e6653jr4DrQVKJKlcJFnIz20ZAzpt+/Qb3aky/vcPR9csne0oxKtZR6KmKdOrLVVH6YqZFGrynHK6ae6fR4g3zMZHCfUDi7KxgONufyhUf5ufXHucWnyY5Bg3twHx7iruAJLOJbcQ3K+HUM4CUcwbH2SnuvfdQ+x6XjYwlzB/45tC9/AOE51Ds=</latexit> 対数をとってマイナスをかける コスト関数 C(✓) = log p(✓) <latexit sha1_base64="dGQ7FytXyMRO7Mw9F/722V4PPcI=">AAAO03iclZfPTxNBFMcfqIioBfRi4mUjYNpDyRSNEhMTEELgJL8KBBdJt0zbDdvdZXdbF5p6MJ5MPHvwpIkH41n/AS/+Ax6IVz0Yj5h48eCb6dqWdkofS9idffM+3++b6Ww7a7iW6QeMHfb0njl7ru98/4WBi5cuxwaHhq+s+U7Jy/J01rEcb8PI+NwybZ4OzMDiG67HM0XD4uvG7ozoXy9zzzcdezXYd/lWMZO3zZyZzQQY2h56OBPXgwIPMgntvpbULSevufVIUtP9UnG7Euimra0+rugBD4OKY/jValWTuXvxWeyuJgvxUFwTie2hETbO5KG1N1JRYwSiY9EZ7vsEOuyAA1koQRE42BBg24IM+Pj3CFLAwMXYFlQw5mHLlP0cqjCAbAmzOGZkMLqL5zzePYqiNt4LTV/SWXSx8N9DUoMx9pW9Z0fsC/vAfrK/HbUqUkPUso9Xo8Zyd3vwxbWVP10pDc8ZrLnQ4E6sOoAcTMpqTazelRExjmyNLx+8Olq5tzxWucnesl84gjfskH3GMdjl39l3S3z5NaqPdawpgBD1HTnH/rGKRE025jyRs1SUVdv4uVQwLmY9LyMhMiLyf0wOOoh7DyNalPe0nqnjbJt4Z0ZuFA8xappHLbPdY0CuJ47j1KGM1yzEYQRXUSJSNVAxlG1DroedupMGozJzFHWqLTohiQ6V7D6J3VeyByT2QMmWSGxJyXok1lOyBok1lKxLYl0lu0di95SsT2J9JVsgsQUlO09i55XsDImdUbKzJHZWyc6R2Dklu0BiF5TsJondVLIbJHZDyU6T2OkOzy/Hp8QhKTClgiN/wfKYR9HQm/LV69yMvstpao18lZrI43imqjXyVWqW/M00MELVayY6zT69uoMTagtxHmgqIlOlcJpKOtdRJH6r6zJTpZCXc0ZfAY189ahcuUYsuaugjq6ZUamuNq2rmk4OWb0p3s7skNx3lH4rTU9Fs18jXq3vLTrtYMT+xJG91fp9HK8FHGttHyZ2YOO4v5jEVhGzzBN7E112TEI/wB6nix9r8lM5slM6FvDKW0bZrptsce7WT/EWO9eS3L3Tncsd+u+cYsw5dCl3/Vwbmu2ep3UUT0d4ol+yi6N6fgfw/SzV+jbW3libGE/dGp9Yuj0y9SB6U+uH63AD60jBXZjC/cgipNHpI3yD7/Ajlo5VYs9iz2upvT0RcxWOHbGX/wAQ4/Ne</latexit> 地震研 サマースクール X log q(Dt h(xt )) t2T obs c 伊藤伸一 11/21

13.

変分法データ同化による初期値更新 x0 = ✓ C(✓) = <latexit sha1_base64="3tnKdZhOroykKE9AkYQLgeiHt+E=">AAACuXichVHLSsNQED2Nr1pfVTeCG7FUXJVpFRRFEN249FUVrJQkXm00TUJyW1pLf8AP0IULH+BC/Aw3Lty66CeISwU3LpykAVFRJyR37rlzZs7N0RzT8CRRI6K0tLa1d0Q7Y13dPb198f6BDc8uubrI6rZpu1ua6gnTsERWGtIUW44r1KJmik3tcNE/3ywL1zNsa11WHbFTVPctY8/QVclQrpKvUX0uJwtCqvl4glIUxMjPJB0mCYSxbMcfkMMubOgooQgBC5JzEyo8fraRBsFhbAc1xlzOjOBcoI4Yc0tcJbhCZfSQv/u82w5Ri/d+Ty9g6zzF5Ndl5giS9Eg39EL3dEtP9P5rr1rQw9dS5VVrcoWT7zseWnv7l1XkVaLwyfpTs8QepgOtBmt3AsS/hd7kl49OX9ZmVpO1MbqiZ9Z/SQ264xtY5Vf9ekWsnv2hR2Mt/h9L/lohUeH5duCAhzpbmf5u3M9kI5NKT6QyK5OJ+YXQ1CiGMYpxdm4K81jCMrI8x8EJznGhzCqqUlAOmqVKJOQM4kso3geL4p4m</latexit> X t2T obs <latexit sha1_base64="ZS3Z0hDusosxrFqeLGFiyaBbqyI=">AAALqnicbdbbbtowGAfwtDt1ZWztdrkbNKqpldYKumnrzaSez+cCPZkhJzjgNk7S2NCUKHuCPc1utxfZ2ywE1C/kS26wv5//DkTEtu5aXKpS6d/Y+JOnz56/mHg5mXuVf/1mavptTTodz2BVw7Ec70KnklncZlXFlcUuXI9RoVvsXL9d6/t5l3mSO3ZFPbisLmjL5iY3qIpKjamPa7NEtZmic4XvBSI7ohEowu1C5UdAFPNV4OgyDMPGVLG0UIqvAm6Uh42iNryOG9OTFmk6RkcwWxkWlfK6XHJVPaCe4obFwjzpSOZS45a22HXUtKlgsh7EPygsJDWgQsoHoYfpoqCqnZpHmUv1gNtuRzHbGA0o33RsJcN8ntjs3nCEoHYzINRrCeqHAenP5rgB8UQhqv3sF4nFBe9HUILbGYmo+JjIkyYzSZcZs8XyXDRUd/yA6I7V7IcKM8XyTPg4iGKnfR6ojlUHNbAaoE2sTVCGlYGaWE3QFtYWaBtrG5Rj5aA3WG9Ab7HeglpYLVCBVYDaWG1QB6sD6mJ1Qe+w3oF6WD1QiVWCKqwKtIO1A9rF2gW9x3oP6mP1QR+wPoD2sPYSL8MK5hUIr2JdBV3Duga6jnUddAPrBugm1k3QLaxboNtYt0F3sO6A7mLdBd3Duge6j3Uf9ADrAegh1kPQI6xHoMdYj0FPsJ6AnmI9BT3DegZawVoBrWKtgtaw1kDPsZ6DXmC9AL3Eegl6hfUq8TL0mJex8JQSy5JgrYztg8T1xCrCo00uY1hcTywn/XNAxrC4nlhlo9NFM2vcABKvevZ0vZHZ/IztgPiJDSF7kpE5RMZSR0RisWtRkfkA4nriVq7klpOxE5ChJP5t8bOKxpgFErfhXxo/7IHE7TB95vCEY7Ow/zlL2jI6oLBgobzERMhHu3NhOqfunVSuFOf4aD8j2PbY8JaPY+eH4XQfp83otJkd7ib6XzPvbPJu+rfGI7ujXRyU3B/NzaeCie+bj86n5fRpFDdqiwvlzwuLJ1+Ky6vDk+qE9l77oM1qZe2btqxta8daVTO0X9pv7Y/2N/cpd5q7zF0Pho6PDTPvtJEr1/wPhiw4kg==</latexit> :データ ✓guess <latexit sha1_base64="YnLegehdSrKrSmzbu3/KDfP7jUU=">AAAOmXiclZfNThNRFMcP+IVVC2hMTNg0FgwsaG7RKHEFQgi4AspHA0OaTnvbTpjODDPTOm1TH8AXcOEKExfK3hdw4wu44BGMS0zcuPDM7dgO7S09HcLMnXPP7/8/9/ZOe0e1dM1xGTsfGb12/cbNW2O3I3fu3ouOT0ze33PMip3juzlTN+20mnW4rhl819Vcnactm2fLqs731eMVv3+/ym1HM40dt2bxo3K2aGgFLZd1MZSZeKi4Je5mMw3F5Z7bKFa44zSbmYk4SzBxxHobyaARh+DYNCdvfgUF8mBCDipQBg4GuNjWIQsO/h1CEhhYGDuCBsZsbGmin0MTIshWMItjRhajx3gu4t1hEDXw3td0BJ1DFx3/bSRjMMN+sM/sgn1nZ+wn+9tXqyE0/FpqeFVbLLcy4+8epf4MpGJ4zmLNpQ53ZdUuFGBRVKth9ZaI+OPItfhq/f1F6uX2TOMJ+8h+4QhO2Tn7hmMwqr9zn7b49gdUn+lbkwse6ptijp1LFfk1GZjzRsxSWVRt4OfSwLg/60UR8ZDxI//HZKKDf29jJBbkvW1nKjjbGt5pgRvFwx81zaOV2esREeuJ4zgVqOI1B7MQx1U0F6iqqOiJtirWQ77tFINpkTmNOs0uHY9Ee1K2RmJrUrZOYutStkJiK1LWJrG2lFVJrCplLRJrSdkTEnsiZR0S60jZEoktSdl1ErsuZVdI7IqUXSWxq1J2jcSuSdkNErshZQ9I7IGUTZPYtJRdJrHLfZ5fjk+JSVJgUgVT/IIVMY+ioYTy5etcC77LaWqdfJman8fxTFXr5MvUdPGbqWKEqhcm+s0+vbr6FbV5OA80FT9TpjBMJf3rKBO/1RWRKVMoijmjr4BOvnxUllgjuthVUEcXZmSqO6F11dIpIKuE4r1MnuSel/qlQk9F2K8Tb7b3Fv12MP7+xBS9zfb9LF5LONbWPszfgSVwf7GIrTJmaVf2zg3YMfn6LvaYA/xYyE/myIZ0LOGVd42yV3e+y3lQP8Xb37lWxO6d7lzt0/98iDEX0KU68HPtaPZ6DuvoPx3elX7zAxzl8xvB97Nk99tYb2NvIZF8mljYehZfehW8qY3BFDzGOpLwApZwP7IJu+jUgFP4AmfRqehydD36upU6OhIwD+DSEU39A+IK3mc=</latexit> Time 適当に選んだ x0 <latexit sha1_base64="AqZRKhAp+ail3X3ypq29XDB6qtc=">AAACy3ichVFNSxtRFD0Zbf3oh6luBF2EhpSuwo0KSkEIunFTSExjBCPDzPQZByczw7yXEDNmI7jxD7hwZUFo6ar+BTcu3HbhTxCXKXTTRe9MBkor2jvMvPvOu+fe8+aYvmNLRXST0oaGnzwdGR0bf/b8xcuJ9KvJDem1AktULc/xgk3TkMKxXVFVtnLEph8Io2k6omburUbntbYIpO25H9S+L7abRsO1d2zLUAzp6dlMRw+pt1xXu0IZelhXoqPCRktI2evp6SzlKY7M/aSQJFkkUfLS16jjIzxYaKEJAReKcwcGJD9bKIDgM7aNkLGAMzs+F+hhnLktrhJcYTC6x98G77YS1OV91FPGbIunOPwGzMwgR9/pC/Xpir7SLf16sFcY94i07PNqDrjC1yeOpys//8tq8qqw+4f1qGaFHSzFWm3W7sdIdAtrwG93T/qVd+u58A19ojvWf0Y3dMk3cNs/rPOyWD99RI/JWqI/lnuwQqHD873YAYnIysK/xt1PNubyhfn8XHkhW1xJTB3FDF7jLTu3iCLWUEKV5xziM77hQnuvSa2rHQxKtVTCmcJfoR39BlCQpa4=</latexit> 地震研 サマースクール = ✓guess ではデータと全く合わないが,,, c 伊藤伸一 12/21

14.

変分法データ同化による初期値更新 x0 = ✓ C(✓) = <latexit sha1_base64="3tnKdZhOroykKE9AkYQLgeiHt+E=">AAACuXichVHLSsNQED2Nr1pfVTeCG7FUXJVpFRRFEN249FUVrJQkXm00TUJyW1pLf8AP0IULH+BC/Aw3Lty66CeISwU3LpykAVFRJyR37rlzZs7N0RzT8CRRI6K0tLa1d0Q7Y13dPb198f6BDc8uubrI6rZpu1ua6gnTsERWGtIUW44r1KJmik3tcNE/3ywL1zNsa11WHbFTVPctY8/QVclQrpKvUX0uJwtCqvl4glIUxMjPJB0mCYSxbMcfkMMubOgooQgBC5JzEyo8fraRBsFhbAc1xlzOjOBcoI4Yc0tcJbhCZfSQv/u82w5Ri/d+Ty9g6zzF5Ndl5giS9Eg39EL3dEtP9P5rr1rQw9dS5VVrcoWT7zseWnv7l1XkVaLwyfpTs8QepgOtBmt3AsS/hd7kl49OX9ZmVpO1MbqiZ9Z/SQ264xtY5Vf9ekWsnv2hR2Mt/h9L/lohUeH5duCAhzpbmf5u3M9kI5NKT6QyK5OJ+YXQ1CiGMYpxdm4K81jCMrI8x8EJznGhzCqqUlAOmqVKJOQM4kso3geL4p4m</latexit> X t2T obs <latexit sha1_base64="ZS3Z0hDusosxrFqeLGFiyaBbqyI=">AAALqnicbdbbbtowGAfwtDt1ZWztdrkbNKqpldYKumnrzaSez+cCPZkhJzjgNk7S2NCUKHuCPc1utxfZ2ywE1C/kS26wv5//DkTEtu5aXKpS6d/Y+JOnz56/mHg5mXuVf/1mavptTTodz2BVw7Ec70KnklncZlXFlcUuXI9RoVvsXL9d6/t5l3mSO3ZFPbisLmjL5iY3qIpKjamPa7NEtZmic4XvBSI7ohEowu1C5UdAFPNV4OgyDMPGVLG0UIqvAm6Uh42iNryOG9OTFmk6RkcwWxkWlfK6XHJVPaCe4obFwjzpSOZS45a22HXUtKlgsh7EPygsJDWgQsoHoYfpoqCqnZpHmUv1gNtuRzHbGA0o33RsJcN8ntjs3nCEoHYzINRrCeqHAenP5rgB8UQhqv3sF4nFBe9HUILbGYmo+JjIkyYzSZcZs8XyXDRUd/yA6I7V7IcKM8XyTPg4iGKnfR6ojlUHNbAaoE2sTVCGlYGaWE3QFtYWaBtrG5Rj5aA3WG9Ab7HeglpYLVCBVYDaWG1QB6sD6mJ1Qe+w3oF6WD1QiVWCKqwKtIO1A9rF2gW9x3oP6mP1QR+wPoD2sPYSL8MK5hUIr2JdBV3Duga6jnUddAPrBugm1k3QLaxboNtYt0F3sO6A7mLdBd3Duge6j3Uf9ADrAegh1kPQI6xHoMdYj0FPsJ6AnmI9BT3DegZawVoBrWKtgtaw1kDPsZ6DXmC9AL3Eegl6hfUq8TL0mJex8JQSy5JgrYztg8T1xCrCo00uY1hcTywn/XNAxrC4nlhlo9NFM2vcABKvevZ0vZHZ/IztgPiJDSF7kpE5RMZSR0RisWtRkfkA4nriVq7klpOxE5ChJP5t8bOKxpgFErfhXxo/7IHE7TB95vCEY7Ow/zlL2jI6oLBgobzERMhHu3NhOqfunVSuFOf4aD8j2PbY8JaPY+eH4XQfp83otJkd7ib6XzPvbPJu+rfGI7ujXRyU3B/NzaeCie+bj86n5fRpFDdqiwvlzwuLJ1+Ky6vDk+qE9l77oM1qZe2btqxta8daVTO0X9pv7Y/2N/cpd5q7zF0Pho6PDTPvtJEr1/wPhiw4kg==</latexit> :データ ✓ˆ <latexit sha1_base64="ehxCx+d3pIESsKl7ZfcPjJ0tcZ8=">AAALjnicbdbLctowFAZgJ72lobRJu+yGKVkkizCQdtJsOs095E4uEJKIychGBgXLdmwBBo/7GN22r9W3qTFMjvGxN0jn0y+DB0tSbYO7slj8NzP74uWr12/m3s5n3mXff1hY/Fhzra6jsapmGZZTV6nLDG6yquTSYHXbYVSoBrtROzsjv+kxx+WWeS0HNmsI2jK5zjUqwxIhbSp9IttM0uBhIV8sFKMrhxulSSOvTK7Kw+K8QZqW1hXMlJpBXfe+VLRlw6eO5JrBgizpusymWoe22H3YNKlgbsOPvnSQi6tPhesOhBoki4LKdmIeqW80fG7aXclMbTogPd0ypRtks8Rkfc0SgppNn1CnJagX+GQ0m2X7xBG5sPZrVCQGF3wUQQlupiTC4nMiS5pMJz2mLedLK+FQ1fJ8olpGcxTKLeVLS8HzIIqdjnisKlYVVMOqgTaxNkEZVgaqY9VBW1hboG2sbVCOlYM+Yn0E7WDtgBpYDVCBVYCaWE1QC6sFamO1QZ+wPoE6WB1QF6sLKrFK0C7WLmgPaw+0j7UP6mH1QAdYB6BDrMPYy7CFeQvC21i3QXew7oDuYt0F3cO6B7qPdR/0AOsBaBlrGfQQ6yHoEdYj0GOsx6AnWE9AT7Gegp5hPQM9x3oOWsFaAb3AegF6ifUS9ArrFeg11mvQKtYqaA1rDfQG6w1oHWsd9BbrLegd1rvYyzBkTsrCU4wtS4K1UrYPEtVjqwgPN7mUYVE9tpyMtvqUYVE9tsqGJ4hm2rgxxF719OmGU7N5KdsB8WIbQvokU3OIlKWOiNhi16Ii9QFE9ditbJcbVspOQCYS+7dFzyoco+dI1IZ/afSwxxK1g+SZwxGWyYLR5zJpu+EBhfmF0gYTAZ/urgTJnOxbiVwxyvHpfkqw7bDJLZ/Hrk7CyT5O6+GJMj3ci/XXU++s817yt0Yje9NdHHS5N51bTQRj3zcbnk9LydMobtTWCqWvhbWLb/nN7clJdU75rHxRlpWS8l3ZVMpKRakqmmIrv5U/yt/MQmY98yPzczx0dmaS+aRMXZnyf3FaLgc=</latexit> ✓guess <latexit sha1_base64="YnLegehdSrKrSmzbu3/KDfP7jUU=">AAAOmXiclZfNThNRFMcP+IVVC2hMTNg0FgwsaG7RKHEFQgi4AspHA0OaTnvbTpjODDPTOm1TH8AXcOEKExfK3hdw4wu44BGMS0zcuPDM7dgO7S09HcLMnXPP7/8/9/ZOe0e1dM1xGTsfGb12/cbNW2O3I3fu3ouOT0ze33PMip3juzlTN+20mnW4rhl819Vcnactm2fLqs731eMVv3+/ym1HM40dt2bxo3K2aGgFLZd1MZSZeKi4Je5mMw3F5Z7bKFa44zSbmYk4SzBxxHobyaARh+DYNCdvfgUF8mBCDipQBg4GuNjWIQsO/h1CEhhYGDuCBsZsbGmin0MTIshWMItjRhajx3gu4t1hEDXw3td0BJ1DFx3/bSRjMMN+sM/sgn1nZ+wn+9tXqyE0/FpqeFVbLLcy4+8epf4MpGJ4zmLNpQ53ZdUuFGBRVKth9ZaI+OPItfhq/f1F6uX2TOMJ+8h+4QhO2Tn7hmMwqr9zn7b49gdUn+lbkwse6ptijp1LFfk1GZjzRsxSWVRt4OfSwLg/60UR8ZDxI//HZKKDf29jJBbkvW1nKjjbGt5pgRvFwx81zaOV2esREeuJ4zgVqOI1B7MQx1U0F6iqqOiJtirWQ77tFINpkTmNOs0uHY9Ee1K2RmJrUrZOYutStkJiK1LWJrG2lFVJrCplLRJrSdkTEnsiZR0S60jZEoktSdl1ErsuZVdI7IqUXSWxq1J2jcSuSdkNErshZQ9I7IGUTZPYtJRdJrHLfZ5fjk+JSVJgUgVT/IIVMY+ioYTy5etcC77LaWqdfJman8fxTFXr5MvUdPGbqWKEqhcm+s0+vbr6FbV5OA80FT9TpjBMJf3rKBO/1RWRKVMoijmjr4BOvnxUllgjuthVUEcXZmSqO6F11dIpIKuE4r1MnuSel/qlQk9F2K8Tb7b3Fv12MP7+xBS9zfb9LF5LONbWPszfgSVwf7GIrTJmaVf2zg3YMfn6LvaYA/xYyE/myIZ0LOGVd42yV3e+y3lQP8Xb37lWxO6d7lzt0/98iDEX0KU68HPtaPZ6DuvoPx3elX7zAxzl8xvB97Nk99tYb2NvIZF8mljYehZfehW8qY3BFDzGOpLwApZwP7IJu+jUgFP4AmfRqehydD36upU6OhIwD+DSEU39A+IK3mc=</latexit> Time 勾配法による最適化により データに適合する初期値 X C(✓) の微分(勾配) = <latexit sha1_base64="ZS3Z0hDusosxrFqeLGFiyaBbqyI=">AAALqnicbdbbbtowGAfwtDt1ZWztdrkbNKqpldYKumnrzaSez+cCPZkhJzjgNk7S2NCUKHuCPc1utxfZ2ywE1C/kS26wv5//DkTEtu5aXKpS6d/Y+JOnz56/mHg5mXuVf/1mavptTTodz2BVw7Ec70KnklncZlXFlcUuXI9RoVvsXL9d6/t5l3mSO3ZFPbisLmjL5iY3qIpKjamPa7NEtZmic4XvBSI7ohEowu1C5UdAFPNV4OgyDMPGVLG0UIqvAm6Uh42iNryOG9OTFmk6RkcwWxkWlfK6XHJVPaCe4obFwjzpSOZS45a22HXUtKlgsh7EPygsJDWgQsoHoYfpoqCqnZpHmUv1gNtuRzHbGA0o33RsJcN8ntjs3nCEoHYzINRrCeqHAenP5rgB8UQhqv3sF4nFBe9HUILbGYmo+JjIkyYzSZcZs8XyXDRUd/yA6I7V7IcKM8XyTPg4iGKnfR6ojlUHNbAaoE2sTVCGlYGaWE3QFtYWaBtrG5Rj5aA3WG9Ab7HeglpYLVCBVYDaWG1QB6sD6mJ1Qe+w3oF6WD1QiVWCKqwKtIO1A9rF2gW9x3oP6mP1QR+wPoD2sPYSL8MK5hUIr2JdBV3Duga6jnUddAPrBugm1k3QLaxboNtYt0F3sO6A7mLdBd3Duge6j3Uf9ADrAegh1kPQI6xHoMdYj0FPsJ6AnmI9BT3DegZawVoBrWKtgtaw1kDPsZ6DXmC9AL3Eegl6hfUq8TL0mJex8JQSy5JgrYztg8T1xCrCo00uY1hcTywn/XNAxrC4nlhlo9NFM2vcABKvevZ0vZHZ/IztgPiJDSF7kpE5RMZSR0RisWtRkfkA4nriVq7klpOxE5ChJP5t8bOKxpgFErfhXxo/7IHE7TB95vCEY7Ow/zlL2jI6oLBgobzERMhHu3NhOqfunVSuFOf4aD8j2PbY8JaPY+eH4XQfp83otJkd7ib6XzPvbPJu+rfGI7ujXRyU3B/NzaeCie+bj86n5fRpFDdqiwvlzwuLJ1+Ky6vDk+qE9l77oM1qZe2btqxta8daVTO0X9pv7Y/2N/cpd5q7zF0Pho6PDTPvtJEr1/wPhiw4kg==</latexit> 地震研 サマースクール x0 = ✓ˆ を探す <latexit sha1_base64="Lo0LEFFzTOuOLCRfu+MtakxyflQ=">AAACwnichVFNL8RQFD3qa3wPNhKbicmI1eQOEiKRCBaWvgaJkUlbjymdtto3kxk1f8AfsLAQEgnxM2wsbC38BLEksbFw22kiCG7TvvvOu+fe83o0xzQ8SfTYoDQ2Nbe0xtraOzq7unvivX1rnl1ydZHVbdN2NzTVE6Zhiaw0pCk2HFeoRc0U69r+XHC+XhauZ9jWqqw6Yquo7lrGjqGrkqF8vD9RyftUm84VVOnnZEFItZaPJylNYSR+JpkoSSKKRTt+jxy2YUNHCUUIWJCcm1Dh8bOJDAgOY1vwGXM5M8JzgRramVviKsEVKqP7/N3l3WaEWrwPenohW+cpJr8uMxNI0QNd0wvd0Q090fuvvfywR6ClyqtW5won33M8sPL2L6vIq0Thk/WnZokdTIZaDdbuhEhwC73OLx+evKxMLaf8YbqgZ9Z/To90yzewyq/65ZJYPv1Dj8Zagj+W+rVCosLz7dABD4GVme/G/UzWRtOZsfTo0nhyZjYyNYZBDGGEnZvADBawiCzPqeIMV7hW5pU95UDx6qVKQ8Tpx5dQjj4Acp2hTg==</latexit> の計算が必要 t2T obs c 伊藤伸一 13/21

15.

Adjoint法による勾配計算 勾配法によって最適化したいが, C(✓) = log p(✓) <latexit sha1_base64="dGQ7FytXyMRO7Mw9F/722V4PPcI=">AAAO03iclZfPTxNBFMcfqIioBfRi4mUjYNpDyRSNEhMTEELgJL8KBBdJt0zbDdvdZXdbF5p6MJ5MPHvwpIkH41n/AS/+Ax6IVz0Yj5h48eCb6dqWdkofS9idffM+3++b6Ww7a7iW6QeMHfb0njl7ru98/4WBi5cuxwaHhq+s+U7Jy/J01rEcb8PI+NwybZ4OzMDiG67HM0XD4uvG7ozoXy9zzzcdezXYd/lWMZO3zZyZzQQY2h56OBPXgwIPMgntvpbULSevufVIUtP9UnG7Euimra0+rugBD4OKY/jValWTuXvxWeyuJgvxUFwTie2hETbO5KG1N1JRYwSiY9EZ7vsEOuyAA1koQRE42BBg24IM+Pj3CFLAwMXYFlQw5mHLlP0cqjCAbAmzOGZkMLqL5zzePYqiNt4LTV/SWXSx8N9DUoMx9pW9Z0fsC/vAfrK/HbUqUkPUso9Xo8Zyd3vwxbWVP10pDc8ZrLnQ4E6sOoAcTMpqTazelRExjmyNLx+8Olq5tzxWucnesl84gjfskH3GMdjl39l3S3z5NaqPdawpgBD1HTnH/rGKRE025jyRs1SUVdv4uVQwLmY9LyMhMiLyf0wOOoh7DyNalPe0nqnjbJt4Z0ZuFA8xappHLbPdY0CuJ47j1KGM1yzEYQRXUSJSNVAxlG1DroedupMGozJzFHWqLTohiQ6V7D6J3VeyByT2QMmWSGxJyXok1lOyBok1lKxLYl0lu0di95SsT2J9JVsgsQUlO09i55XsDImdUbKzJHZWyc6R2Dklu0BiF5TsJondVLIbJHZDyU6T2OkOzy/Hp8QhKTClgiN/wfKYR9HQm/LV69yMvstpao18lZrI43imqjXyVWqW/M00MELVayY6zT69uoMTagtxHmgqIlOlcJpKOtdRJH6r6zJTpZCXc0ZfAY189ahcuUYsuaugjq6ZUamuNq2rmk4OWb0p3s7skNx3lH4rTU9Fs18jXq3vLTrtYMT+xJG91fp9HK8FHGttHyZ2YOO4v5jEVhGzzBN7E112TEI/wB6nix9r8lM5slM6FvDKW0bZrptsce7WT/EWO9eS3L3Tncsd+u+cYsw5dCl3/Vwbmu2ep3UUT0d4ol+yi6N6fgfw/SzV+jbW3libGE/dGp9Yuj0y9SB6U+uH63AD60jBXZjC/cgipNHpI3yD7/Ajlo5VYs9iz2upvT0RcxWOHbGX/wAQ4/Ne</latexit> Adjoint法 L=C+ <latexit sha1_base64="78IbWdMIbrr+VecwGQKtTmPH9ds=">AAAO2HiclZe/b9NAFMcfv6FAaGFBYrEoRa1Qo0tBUIGQKK0QSAz0d1XcRrZzSSwc27WdkNYyYkMwsjAwgcSA2BlYWfgHGNhYgREkFgbeXUwSmkvy4qr2+d37fL/vLufkbPqOHUaMfdmzd9/+AwcPHT4ydPTY8cyJ4ZGTK6FXDSy+bHmOF6yZRsgd2+XLkR05fM0PuFExHb5qPpgV/as1HoS25y5F2z7fqBgl1y7alhFhKD+8dFe7rs1qFzTddqN8zJLNeCnRCpF+TdMdlCkYm7EeeX6Sj6MEQ7wYjRfH6+JuYlIvBoYVF5K4ECUypAd2qRxN5IdHWZbJQ+ts5NLGKKTHPW/k4HvQoQAeWFCFCnBwIcK2AwaE+HcfcsDAx9gGxBgLsGXLfg4JDCFbxSyOGQZGH+C5hHf306iL90IzlLSFLg7+B0hqMMY+s7fsJ/vE3rFv7E9XrVhqiFq28Wo2WO7nTzw7vfi7L6Xh2cCayy2uZ9URFGFaVmtj9b6MiHFYDb628+Ln4tWFsfg8e81+4AhesS/sI47Brf2y3szzhZeoPta1pgjqqO/JOQ7/q0jU5GLOQzlLFVm1i59LjHEx6yUZqSMjIv/G5KGDuA8woqV5j5qZOs62jXd26kbxEKOmeTQyOz2G5HriOE4dani1YBxGcRVNpKomKtZl25TrodB00uCczDyHOskunTqJrivZbRK7rWR3SOyOkq2S2KqSDUhsoGRNEmsqWZ/E+kp2i8RuKdmQxIZKtkxiy0r2Nom9rWRnSeyskp0jsXNK9haJvaVk75DYO0p2ncSuK9k1ErumZGdI7EyX55fjU+KRFJhSwZO/YCXMo2jobfnqdW6n3+U0tVa+Sk3kcTxT1Vr5KjVH/maaGKHqtRPdZp9e3U6P2uo4DzQVkalSGKSS7nVUiN/qusxUKZTknNFXQCtfPSpfrhFH7iqoo2tnVKpLbeuqoVNEVm+LdzIFkntB6bfY9lS0+7XiSXNv0W0HI/YnnuxNmvfjeC3jWBv7MLEDy+L+YhpbFcyye/ZO9NkxCf0Ie7w+fqzNT+XIBnQs45XvGmWn7uQu5379FG+xc63K3Tvdudal//IAYy6iS63v59rS7PQc1FE8HfWefpN9HNXzO4TvZ7ndb2OdjZWpbO5idmr+0uiNm+mb2mE4A2exjhxcgRu4H7kHy+j0Ab7CN/ieWc88zjzJPG2k7t2TMqfgvyPz/C9rdfbf</latexit> Z T X logq(D q(Dtt h(x h(xtt)) )) log t2T obs ✓ で直接微分ができない ✓ ◆ d T :終端時刻 > dt t f (xt ) xt t:Adjoint変数 dt <latexit sha1_base64="JhwuSzHapToMJpcRjI3puCA2jKQ=">AAAOmniclZfNbhJRFMdP61dFpa0mxkQXRFpTFiUXStrqql9p2rjpd0lLQxi4wKQDM50ZkA/xAXwBF65s4sLUtS/gxhdw0UcwLmvixoXnXijQcoHDNJ25c+75/f/nXu7AHc0ydMdl7Hxo+MbNW7fvjNz13Lv/wDs6Nv5wzzELdpLvJk3DtKNawuGGnue7ru4aPGrZPJHTDL6vHS+L/v0itx3dzO+4ZYsf5RKZvJ7WkwkXQ/GxxzHDzPhOplbiVbc2nZ0qiWsgEB/zs+DL+dlwZNbHgozNhcIh0QjPRWYivhBGxOGHxrFhjt/+BjFIgQlJKEAOOOTBxbYBCXDw7xBCwMDC2BFUMWZjS5f9HGrgQbaAWRwzEhg9xnMG7w4b0TzeC01H0kl0MfDfRtIHk+wn+8Iu2A92xn6xf121qlJD1FLGq1ZnuRUfff9k+29fyofnBNacbXE9q3YhDfOyWh2rt2REjCNZ54uVDxfbr7Ymqy/YKfuNI/jEztl3HEO++Cf5eZNvfUT1ya41uVBCfVPOsXOlIlFTHnPeyFnKyarz+LlUMS5mPSMjJWRE5HJMJjqIexsjvkbeu2ZmDGdbxzu94UbxEKOmedQzOz08cj1xHGcMinhNwhT4cRUFGqoaKpZkW5PrIdV08sGEzJxAndo1nRKJLinZMoktK9kKia0o2QKJLShZm8TaSlYjsZqStUispWRPSOyJknVIrKNksyQ2q2TXSOyakl0msctKdoXErijZVRK7qmTXSey6kj0gsQdKNkpio0p2kcQudnl+OT4lJkmBKRVM+QuWwTyKRqwtX73O9cZ3OU2tla9SE3kcz1S1Vr5KzZC/mRpGqHrtRLfZp1dX6VFbCeeBpiIyVQqDVNK9jhzxWz0mM1UKGTln9BXQylePypJrxJC7Curo2hmV6k7buqrrpJGNtcU7mRTJPaX02257Ktr9WvFac2/RbQcj9iem7K0176fwmsWx1vdhYgcWxP3FPLZymKX37A302TEJfRd7zD5+rM1P5cgGdMzilV8bZafu9DXnfv0Ub7FzLcjdO9252KV/doAxp9Gl2PdzbWl2eg7qKJ6OUk+/6T6O6vn14PvZ5UuYr3tjLxwMzQTDmxH/wlLjTW0EnsJzrCMEc7CA+5EN2EWnt3AKZ/DV+8y75F33vq6nDg81mEdw5fDu/AcWvN1i</latexit> <latexit sha1_base64="jRRHIl4aQaDCLy6WjaPD1Ye14kE=">AAACs3ichVFNLwNRFD0d39/FRmLTaCpWzWsRYiVsLLW0JG0jM9NXns5XZl4bNP6AlZ1gRWIhfoaNha1Ff4JYVmJj4c50EkFwJzPvvvPuufe8OZpjCE8y1owoHZ1d3T29ff0Dg0PDI9HRsbxn11yd53TbsN1tTfW4ISyek0IafNtxuWpqBt/Sqqv++Vadu56wrU156PCSqe5aoiJ0VRKUL8o9LtWdaJwlWRCxn0kqTOIIY92OPqKIMmzoqMEEhwVJuQEVHj0FpMDgEFZCgzCXMhGccxyjn7g1quJUoRJape8u7QohatHe7+kFbJ2mGPS6xIwhwZ7YLWuxB3bHntn7r70aQQ9fyyGtWpvLnZ2Rk4mNt39ZJq0Se5+sPzVLVLAYaBWk3QkQ/xZ6m18/OmttLGUTjWl2zV5I/xVrsnu6gVV/1W8yPHv5hx6NtPh/LPFrhcQBzbcDBzwck5Wp78b9TPLpZGo2mc7MxZdXQlN7MYkpzJBzC1jGGtaRozn7OMU5LpR5paBoSrldqkRCzji+hGJ+AHhQm64=</latexit> <latexit sha1_base64="ajy51y/F7329LyhzgkGTAYF0l28=">AAAOg3iclZfPTxNBFMcfKIhVC+jFxEtjwUAMzRSJEhMTEELgxm8aKCHd7bTdsO0uu9vaH6l/gF41Hjxp4sF49x/w4j/ggT/BeMTEiwffTNd2aaft6xJ2Z9+8z/f7Zjrbzmq2abgeY+dDw1eujoxeG7seunHzVnh8YvL2vmsVHZ3v6ZZpOQkt5XLTKPA9z/BMnrAdnsprJj/QTldE/0GJO65hFXa9is2P86lswcgYesrD0NbuyUSUxZg8Ip2NuN+Ign9sWpOjXyEJabBAhyLkgUMBPGybkAIX/44gDgxsjB1DDWMOtgzZz6EOIWSLmMUxI4XRUzxn8e7IjxbwXmi6ktbRxcR/B8kITLMf7DO7YN/ZF/aT/e2qVZMaopYKXrUGy+2T8Vd3d/70pSJ4TmHNuRbXs2oPMrAoqzWweltGxDj0Bl+qvrvYebo9XXvAPrJfOIIP7Jx9wzEUSr/1T1t8+z2qT3etyYMy6ltyjt1LFYmaCpjzQs5SXlZdwM+lhnEx61kZKSMjIv/HZKGDuHcwEvHzXjYzkzjbBt4ZvhvFQ4ya5tHI7PQIyfXEcZxJKOFVhxmI4iqa9VU1VCzLtibXQ7rpFIEpmTmFOvU2nTKJLivZComtKNkqia0q2SKJLSpZh8Q6SlYjsZqStUmsrWTPSOyZknVJrKtkcyQ2p2TXSey6kl0hsStKdpXErirZNRK7pmQ3SOyGkj0ksYdKNkFiE0p2mcQud3l+OT4lFkmBKRUs+QuWxTyKRjKQr17nhv9dTlNr5avURB7HM1Wtla9SM+VvpoYRql6Q6Db79OqqPWor4zzQVESmSmGQSrrXkSd+qydlpkohK+eMvgJa+epR2XKNmHJXQR1dkFGp7gbWVUMng2wyEO9k0iT3tNJvJ/BUBP1a8Xpzb9FtByP2J5bsrTfvZ/Caw7E29mFiBxbD/cUitvKYZfTsne2zYxL6HvZYffxYwE/lyAZ0zOGVt42yU3euzblfP8Vb7FyLcvdOdy516X88wJgz6FLq+7m2NDs9B3UUT0e5p99cH0f1/Ibw/Sze/jbW2difj8Ufxea3FqJLz/03tTG4B/exjjg8gSXcj2zCnnR6DW/gbXgk/DA8H15opA4P+cwduHSEn/0DsE3UuQ==</latexit> 0 <latexit sha1_base64="MTTozS6+KSrcznvpKqdNQgdB5ko=">AAAOjXiclZfNbtNAEMenBUoJkLZwQeISkRa1h0ab8lUhhFpalfbW70Ztqsp2NolVx3ZtJ+RD4QG4Iw5IIJA4IO68ABdegEMfAXEsEhcOjDcmcZNNMnFVez07v//MbNbJWLUN3fUYOx0avnDx0sjl0SuRq9euR8fGJ27sulbR0fiOZhmWk1IVlxu6yXc83TN4yna4UlANvqceL/nzeyXuuLplbnsVmx8WlJypZ3VN8dB0kDbQNaMc1bz60XicJZg4Yp2DZDCIQ3CsWxMjXyENGbBAgyIUgIMJHo4NUMDFvwNIAgMbbYdQQ5uDI13Mc6hDBNkienH0UNB6jOcc3h0EVhPvfU1X0BpGMfDfQTIGU+wH+8zO2Hf2hf1kf7tq1YSGn0sFr2qD5fbR2KtbW3/6UjE8K5hzvsX1zNqDLMyLbHXM3hYWvw6twZeqb862Hm9O1e6yj+wXVvCBnbJvWINZ+q192uCbb1F9qmtOHpRR3xJr7J7LyM/JRJ8XYpUKImsTP5ca2v1VzwlLGRnf8r8mCyP49w5aYoHfy6ZnGldbxzs9iEaJ4VdNi9Hw7IwREfuJY51pKOFVg2mI4y6aCVRVVCyLsSr2Q6YZKQaTwnMSdeptOmUSXZayFRJbkbJVEluVskUSW5SyDol1pKxKYlUpa5NYW8qekNgTKeuSWFfK5klsXsqukthVKbtEYpek7DKJXZayKyR2Rcqukdg1KbtPYvelbIrEpqTsIold7PL8cnxKLJICkypY4hcsh34UjXTIX77P9eC7nKbW8pep+X4cz1S1lr9MzRC/mSpaqHphotvq07Or9sitjOtAU/E9ZQqDZNI9jwLxWz0tPGUKObFm9B3Q8pdXZYs9YoiuglpdmJGpbof2VUMni2w6ZO9kMqToGWm8rdBTEY7XstebvUW3DsbvTywxW2/eT+M1j7U2+jC/A0tgfzGPowJ66T1nZ/p0TL6+hzNWn3gsFE8WkQ0YMY9X3lZlp+5sW+R+85TYfudaFN07PXKpy/zDAWrOYpRS38+1pdkZc9CI/tNR7hlvtk9E+fpG8P0s2f421jnYnUsk7yXmNu7HF54Fb2qjcBvuYB5JeAQL2I+sw47I/TW8g/fRseiD6JPo04br8FDA3IRzR/T5PxM92VE=</latexit> (ラグランジュの未定乗数) 変分をとって係数比較 Adjoint モデル d dt t = (r x f )> t + X t0 2T obs <latexit sha1_base64="1kqcoTy2iTY3iSE4F+wj0lrXbFY=">AAAMAnicbdZNc9M4GAdwB3YXtiFLgb3txbNhhnR22klYBrgwAy0v5b2Fpi+gbke25URUsoylpG494rSfhhvDlS/CnQ+C7Wb6OH7sSyT9nr+ceGJJXiy4Nv3+99a587/8+tuFi78vtC91/ri8eOXqtlaTxGdDXwmV7HpUM8EjNjTcCLYbJ4xKT7Ad73Ct8J0pSzRX0ZY5jtm+pKOIh9ynJh86WPy0TMKE+llgs8BYIvJkQA8yY917LhEsND0SUU/kQ6kNScJHY7P0X0aMiqvF/xA9kXnjBuGRu1U4S02mPG2tJQEThvbMsrmxdDZXUWutu3aw2O2v9MvLxY3BrNF1ZtfGwZUFQQLlTySLjC+o1u8H/djsZzQx3BfMdshEs5j6h3TE3ufNiEqm97PyQVm3qhmVWh9Lz9YHJTXj2jwmvLuf8SieGBb58wGThioy2nY6JGJHvpKSRkFGaDKSNLUZKWZTcUYS6eZjn4pBIrjkRQQleNSQyAfPEp38aYZkyvxed7CUl3oqzYinRFCE3OvdwXV7VkSx04JP1cPqgfpYfdAAawDKsDLQEGsIOsI6Ah1jHYNyrBz0A9YPoIdYD0EFVgEqsUrQCGsEqrAq0BhrDPoR60fQBGsCqrFqUIPVgE6wTkCnWKegR1iPQFOsKegx1mPQE6wnlZfhAeYHEF7Fugq6hnUN9CHWh6CPsD4CfYz1MegTrE9A17Gugz7F+hT0GdZnoM+xPgd9gfUF6EusL0FfYX0F+hrra9ANrBugm1g3Qd9gfQP6Futb0C2sW6BDrEPQbazboDtYd0B3se6C7mHdA32H9V3lZThhScPC068sS5KNGrYPUo5XVhGeb3INZeV4ZTkZM9NUVo5XVtnyONFQdwqVV715upO52dKG7YCklQ2heZK5OWTDUkdkZbEbUdn4AMrxyq1izYVq2AnITCr/tvJZ5TWhS8o2/EvLh30qZdvWzxyJVBGzxWePjHV+QGHZyuAuk5bPd5dsPWeOVC3XL3N8vt8QHCdsdsuz2uVZuN7H6TA/xTaHp5X+7cY7h3xa/61l5XS+i4Oap/O55Vqw8n07+fl0UD+N4sb2zZXBvys3N29176/OTqoXnb+cv52eM3DuOPeddWfDGTq+86O10LrW+rP9f/tz+0v762npudYsc82Zu9rffgJIfluJ</latexit> (t t0 )r xt0 C <latexit sha1_base64="h5FlaEbyb5cnhAtKyCqna4vs1GU=">AAALj3icbdbLctowFAZgJ72lobRJu+yGKVkkizCQdpps2sn9fiEJEJKIychGBgXLdmwBBo/7Gt22j9W3qTFMjvGxN0j6zi+DB0tSbYO7slj8NzP74uWr12/m3s5n3mXff1hY/Fhzra6jsapmGZZTV6nLDG6yquTSYHXbYVSoBrtROzsjv+kxx+WWWZEDmzUEbZlc5xqV4VCDGGFpkz74leBH8WEhXywUoyuHG6VJI69MrvLD4rxBmpbWFcyUmkFd975UtGXDp47kmsGCLOm6zKZah7bYfdg0qWBuw4++dZCLq0+F6w6EGiQHBZXtxDxS32j43LS7kpnadEB6umVKN8hmicn6miUENZs+oU5LUC/wyWg2y/aJI3Lh2K/RIDG44KMISnAzJREOPieypMl00mPacr60EpaqlucT1TKao1BuKV9aCp6LKHY64rGqWFVQDasG2sTaBGVYGaiOVQdtYW2BtrG2QTlWDvqI9RG0g7UDamA1QAVWAWpiNUEtrBaojdUGfcL6BOpgdUBdrC6oxCpBu1i7oD2sPdA+1j6oh9UDHWAdgA6xDmMvwxbmLQhvY90G3cG6A7qLdRd0D+se6D7WfdADrAegh1gPQY+wHoEeYz0GPcF6AnqK9RT0DOsZ6DnWc9ALrBegZaxl0Eusl6BXWK9Ar7Feg1awVkCrWKugNaw10BusN6B1rHXQW6y3oHdY72Ivw5A5KQtPMbYsCdZK2T5INB5bRXi4yaWUReOx5aTNZFpZNB5bZaNzQUrdGGKvevp0w6nZvJTtgHixDSF9kqk5RMpSR0RssWtRkfoAovHYrWyXG1bKTkAmEvu3Rc8qrNFzJGrDvzR62GOJ2kHyzOEIy2TB6HOZtN3wgML8QmmDiYBPd1eCZE72rUSuGOX4dD8l2HbY5JbPtauTcLKP03p4pEwP92L976l31nkv+Vujyt50Fwdd7k3nVhPB2PfNhufTUvI0ihu1tULpa2Ht8lt+c3tyUp1TPitflGWlpKwrm8qhUlaqiqY8Kb+VP8rfzGJmPfMzszkunZ2ZZD4pU1fm6D+j8C3j</latexit> T =0 直接微分が取れなくても、adjointモデルを解くことで微分が得られる ※ t=Tから時間後ろ向きに解く必要があることに注意! 地震研 サマースクール c 伊藤伸一 14/21

16.
[beta]
時間後ろ向きに計算する
Adjoint モデル

d
dt

t

= (r x f )>

t +

X

t0 2T obs

<latexit sha1_base64="1kqcoTy2iTY3iSE4F+wj0lrXbFY=">AAAMAnicbdZNc9M4GAdwB3YXtiFLgb3txbNhhnR22klYBrgwAy0v5b2Fpi+gbke25URUsoylpG494rSfhhvDlS/CnQ+C7Wb6OH7sSyT9nr+ceGJJXiy4Nv3+99a587/8+tuFi78vtC91/ri8eOXqtlaTxGdDXwmV7HpUM8EjNjTcCLYbJ4xKT7Ad73Ct8J0pSzRX0ZY5jtm+pKOIh9ynJh86WPy0TMKE+llgs8BYIvJkQA8yY917LhEsND0SUU/kQ6kNScJHY7P0X0aMiqvF/xA9kXnjBuGRu1U4S02mPG2tJQEThvbMsrmxdDZXUWutu3aw2O2v9MvLxY3BrNF1ZtfGwZUFQQLlTySLjC+o1u8H/djsZzQx3BfMdshEs5j6h3TE3ufNiEqm97PyQVm3qhmVWh9Lz9YHJTXj2jwmvLuf8SieGBb58wGThioy2nY6JGJHvpKSRkFGaDKSNLUZKWZTcUYS6eZjn4pBIrjkRQQleNSQyAfPEp38aYZkyvxed7CUl3oqzYinRFCE3OvdwXV7VkSx04JP1cPqgfpYfdAAawDKsDLQEGsIOsI6Ah1jHYNyrBz0A9YPoIdYD0EFVgEqsUrQCGsEqrAq0BhrDPoR60fQBGsCqrFqUIPVgE6wTkCnWKegR1iPQFOsKegx1mPQE6wnlZfhAeYHEF7Fugq6hnUN9CHWh6CPsD4CfYz1MegTrE9A17Gugz7F+hT0GdZnoM+xPgd9gfUF6EusL0FfYX0F+hrra9ANrBugm1g3Qd9gfQP6Futb0C2sW6BDrEPQbazboDtYd0B3se6C7mHdA32H9V3lZThhScPC068sS5KNGrYPUo5XVhGeb3INZeV4ZTkZM9NUVo5XVtnyONFQdwqVV715upO52dKG7YCklQ2heZK5OWTDUkdkZbEbUdn4AMrxyq1izYVq2AnITCr/tvJZ5TWhS8o2/EvLh30qZdvWzxyJVBGzxWePjHV+QGHZyuAuk5bPd5dsPWeOVC3XL3N8vt8QHCdsdsuz2uVZuN7H6TA/xTaHp5X+7cY7h3xa/61l5XS+i4Oap/O55Vqw8n07+fl0UD+N4sb2zZXBvys3N29176/OTqoXnb+cv52eM3DuOPeddWfDGTq+86O10LrW+rP9f/tz+0v762npudYsc82Zu9rffgJIfluJ</latexit>

(t

t0 )r xt0 C
<latexit sha1_base64="h5FlaEbyb5cnhAtKyCqna4vs1GU=">AAALj3icbdbLctowFAZgJ72lobRJu+yGKVkkizCQdpps2sn9fiEJEJKIychGBgXLdmwBBo/7Gt22j9W3qTFMjvGxN0j6zi+DB0tSbYO7slj8NzP74uWr12/m3s5n3mXff1hY/Fhzra6jsapmGZZTV6nLDG6yquTSYHXbYVSoBrtROzsjv+kxx+WWWZEDmzUEbZlc5xqV4VCDGGFpkz74leBH8WEhXywUoyuHG6VJI69MrvLD4rxBmpbWFcyUmkFd975UtGXDp47kmsGCLOm6zKZah7bYfdg0qWBuw4++dZCLq0+F6w6EGiQHBZXtxDxS32j43LS7kpnadEB6umVKN8hmicn6miUENZs+oU5LUC/wyWg2y/aJI3Lh2K/RIDG44KMISnAzJREOPieypMl00mPacr60EpaqlucT1TKao1BuKV9aCp6LKHY64rGqWFVQDasG2sTaBGVYGaiOVQdtYW2BtrG2QTlWDvqI9RG0g7UDamA1QAVWAWpiNUEtrBaojdUGfcL6BOpgdUBdrC6oxCpBu1i7oD2sPdA+1j6oh9UDHWAdgA6xDmMvwxbmLQhvY90G3cG6A7qLdRd0D+se6D7WfdADrAegh1gPQY+wHoEeYz0GPcF6AnqK9RT0DOsZ6DnWc9ALrBegZaxl0Eusl6BXWK9Ar7Feg1awVkCrWKugNaw10BusN6B1rHXQW6y3oHdY72Ivw5A5KQtPMbYsCdZK2T5INB5bRXi4yaWUReOx5aTNZFpZNB5bZaNzQUrdGGKvevp0w6nZvJTtgHixDSF9kqk5RMpSR0RssWtRkfoAovHYrWyXG1bKTkAmEvu3Rc8qrNFzJGrDvzR62GOJ2kHyzOEIy2TB6HOZtN3wgML8QmmDiYBPd1eCZE72rUSuGOX4dD8l2HbY5JbPtauTcLKP03p4pEwP92L976l31nkv+Vujyt50Fwdd7k3nVhPB2PfNhufTUvI0ihu1tULpa2Ht8lt+c3tyUp1TPitflGWlpKwrm8qhUlaqiqY8Kb+VP8rfzGJmPfMzszkunZ2ZZD4pU1fm6D+j8C3j</latexit>

T

=0

t
<latexit sha1_base64="RWXuDuJHXJvlN8xJDO9R8AqtrUs=">AAAKkXiclZbPTxNBFMcfiIrrD0AuJl4aC8ZTMzX+qqeihEC8UEqhgSVkdzttN2x3l91thTb4B+hV48GTJh6Mf4MnL/4DHvgTjEdMvHjwzexCV5nCY5tuZ95+P9958zqdjuk7dhgxtj80fG7k/IWLo5e0y1euXhsbn7i+EnrtwOIVy3O8oGoaIXdsl1ciO3J41Q+40TIdvmpuPRXPVzs8CG3PXY52fb7RMhquXbctI8JQKdocz7JcocAeFO5njjfyOSavLCTXojcx8gV0qIEHFrShBRxciLDtgAEhvtYhDwx8jG1AD2MBtmz5nMMeaMi2UcVRYWB0C+8N7K0nURf7wjOUtIWjOPgOkMzANPvOPrED9o19Zj/Yn4FePekhctnFTzNmub859vJG+fepVAs/I2j2qRNzjqAOj2SuNubuy4iYhRXzne7bg/LjpenebfaB/cT837N99hVn4HZ+WR9LfOkdugt/F6nncr4tmYGLFe5hXNSvISM76Cgih/l5OJroBxjJJLoXR0od62Zjz0ZtmNT9tDHEDGhjxMrjY2hyZXCsiQ4dzCP2MtEnbpvy+6wd+WdgCp9MIbv3H9smsW0lG5DYQMmaJNZUsj6J9ZXsNondVrIhiQ2VbJPENpXsPImdV7KzJHZWyc6R2Dklu0BiF5TsGoldU7JVEltVsjMkdkbJdrEVoJriwJQOntyPG6ijeOgpvXqt2sl+RnPr61VuQsfxTnXr61VujvwHMDFC9UsTg6pPz657Qm47WAeai1CqHM6SyeA8WsSdWZdKlUND1oy+Avp69ax8uUbEKcElzy7NqFyXU+sq9qkjq6fix5kaafSacrxy6leRHq8fjxkNT2uHR7LM4MbK3Vye5fKle9nik+TcNgo34RbcwbPZQyjinrwIFTwJcHgFr+GNNqkVtKKWaIeHEmYS/rm0Z38BNcAYCQ==</latexit>
<latexit

Input

✓
<latexit sha1_base64="jRRHIl4aQaDCLy6WjaPD1Ye14kE=">AAACs3ichVFNLwNRFD0d39/FRmLTaCpWzWsRYiVsLLW0JG0jM9NXns5XZl4bNP6AlZ1gRWIhfoaNha1Ff4JYVmJj4c50EkFwJzPvvvPuufe8OZpjCE8y1owoHZ1d3T29ff0Dg0PDI9HRsbxn11yd53TbsN1tTfW4ISyek0IafNtxuWpqBt/Sqqv++Vadu56wrU156PCSqe5aoiJ0VRKUL8o9LtWdaJwlWRCxn0kqTOIIY92OPqKIMmzoqMEEhwVJuQEVHj0FpMDgEFZCgzCXMhGccxyjn7g1quJUoRJape8u7QohatHe7+kFbJ2mGPS6xIwhwZ7YLWuxB3bHntn7r70aQQ9fyyGtWpvLnZ2Rk4mNt39ZJq0Se5+sPzVLVLAYaBWk3QkQ/xZ6m18/OmttLGUTjWl2zV5I/xVrsnu6gVV/1W8yPHv5hx6NtPh/LPFrhcQBzbcDBzwck5Wp78b9TPLpZGo2mc7MxZdXQlN7MYkpzJBzC1jGGtaRozn7OMU5LpR5paBoSrldqkRCzji+hGJ+AHhQm64=</latexit>

Output

<latexit sha1_base64="pbpm7LokrN6XiD4C/gJ6Clb8cQ0=">AAAINniclZU9b9NAGMeftoBLeWkKDEgsFmkQU3QJLVRMFUVVx76QNlVTRbZzTk/1m+xLSGOFjYUvwMACSAyFL8DOwhdg6MKGEGJBKhILA4/PbtMipX3qKL675/7/3z139vnMwBGRZGxvaHjk3PkL2ujFsUuXr1wdz01cW438VmjxiuU7flg1jYg7wuMVKaTDq0HIDdd0+Jq5PZf0r7V5GAnfeyJ3Ar7pGk1P2MIyJIbquRs1OzSsuKHP9fBWk1tcGr16Ls+KZTYzPX1fzyrsoDKll4pMXXnIrkV/YuQ51KABPljQAhc4eCCx7oABEf42oAQMAoxtQoyxEGtC9XPowRh6W6jiqDAwuo33JrY2sqiH7YQZKbeFozj4D9GpQ4F9Ybtsn31mH9gP9ncgK1aMJJcdLM3Uy4P6+IubK39OdblYStjqu07MWYINMypXgbkHKpLMwkr97e7L/ZWHy4X4DnvLfmL+b9ge+4Qz8Nq/rXdLfPkV0gsDM5LQQb6vVjjKVq+BPTaWbXiMipqaoY+6pG6q9WoczkGHSVRNojP1euh9qlbVVRoPtbFidVBBoXVItC6R1iXRQiItJM5UEHk1paUwHfXumNg2yOyjHsoYiZPjnT5C30Hhn419nHsy2SZSbVKeAarpTzBVU7jrROY6iTZPpM2TaFUirUqiLRBpC8S9znHn+UQmIzCTM6OpIv2vUkrw8Xkm7RAjeqZ7dqhM9pTAljjytTxtjOSrTRsjVf43Bp6eB0ekPriyWi6W7hXLS1P52UfZOToKt+A23MWz8gHM4kovQgWz7MJr2IX32kftq/ZN+55Kh4cyz3U4dmm//gE1N7UG</latexit>

dC
d✓

t
<latexit sha1_base64="RWXuDuJHXJvlN8xJDO9R8AqtrUs=">AAAKkXiclZbPTxNBFMcfiIrrD0AuJl4aC8ZTMzX+qqeihEC8UEqhgSVkdzttN2x3l91thTb4B+hV48GTJh6Mf4MnL/4DHvgTjEdMvHjwzexCV5nCY5tuZ95+P9958zqdjuk7dhgxtj80fG7k/IWLo5e0y1euXhsbn7i+EnrtwOIVy3O8oGoaIXdsl1ciO3J41Q+40TIdvmpuPRXPVzs8CG3PXY52fb7RMhquXbctI8JQKdocz7JcocAeFO5njjfyOSavLCTXojcx8gV0qIEHFrShBRxciLDtgAEhvtYhDwx8jG1AD2MBtmz5nMMeaMi2UcVRYWB0C+8N7K0nURf7wjOUtIWjOPgOkMzANPvOPrED9o19Zj/Yn4FePekhctnFTzNmub859vJG+fepVAs/I2j2qRNzjqAOj2SuNubuy4iYhRXzne7bg/LjpenebfaB/cT837N99hVn4HZ+WR9LfOkdugt/F6nncr4tmYGLFe5hXNSvISM76Cgih/l5OJroBxjJJLoXR0od62Zjz0ZtmNT9tDHEDGhjxMrjY2hyZXCsiQ4dzCP2MtEnbpvy+6wd+WdgCp9MIbv3H9smsW0lG5DYQMmaJNZUsj6J9ZXsNondVrIhiQ2VbJPENpXsPImdV7KzJHZWyc6R2Dklu0BiF5TsGoldU7JVEltVsjMkdkbJdrEVoJriwJQOntyPG6ijeOgpvXqt2sl+RnPr61VuQsfxTnXr61VujvwHMDFC9UsTg6pPz657Qm47WAeai1CqHM6SyeA8WsSdWZdKlUND1oy+Avp69ax8uUbEKcElzy7NqFyXU+sq9qkjq6fix5kaafSacrxy6leRHq8fjxkNT2uHR7LM4MbK3Vye5fKle9nik+TcNgo34RbcwbPZQyjinrwIFTwJcHgFr+GNNqkVtKKWaIeHEmYS/rm0Z38BNcAYCQ==</latexit>
<latexit

<latexit sha1_base64="ryuXTQ0mJCzzWoku/BcVPGMW6NI=">AAAC3XichVG/SxxBFP5cY2I0iRdtAmnE40IKOd5eAgmCINqk9MedCq4uu+t4Lu7tLDtzh7psaSNiJVikSiCF+B+k1cLCNoV/QrA0kCZF3u4thEQ0s+zMN9+8771v5rlR4CtNdNVj9D7oe/io//HA4JOnz4ZKz4cXlWzHnmh4MpDxsusoEfihaGhfB2I5ioXTcgOx5G7NZOdLHRErX4Z1vROJ1ZbTDP0N33M0U3apWl9LLC22dSJdlaaTVkLj2k7MNJtr6bi1LrXKcJhO1q3ULpWpSvkYvQ3MApRRjFlZuoSFdUh4aKMFgRCacQAHir8VmCBEzK0iYS5m5OfnAikGWNvmKMERDrNbPDd5t1KwIe+znCpXe1wl4D9m5Sgq9I1O6IYu6JS+0687cyV5jszLDq9uVysie2j/xcLP/6pavGps/lHd61ljA+9zrz57j3Imu4XX1Xd2j28WJuYrySv6TNfs/xNd0RnfIOz88L7MifmP9/hx2Uv2YpU7IzS2ub7MO6CQtdL8t3G3wWKtar6p1ubelqemi6b24yXG8Jo79w5T+IBZNLjOEb7iDOeGbewZB8ZhN9ToKTQj+GsYx78BYuOsqg==</latexit>

地震研 サマースクール

T obs = {0, t1 , t2 , . . . , tn = T }

c 伊藤伸一

15/21

17.

変分法データ同化を使ってできること 直接微分のとれないコスト関数の(高階も含め)微分が計算できる 微分がわかるといろんなことがわかる ・最適化によるパラメータやモデルの初期値のMAP解推定 ・感度解析(パラメータに対するモデルの敏感さ) ・不確実性評価(MAP解周りの標準偏差) <latexit sha1_base64="aKB9kaQCOyKzH6yU8shDDgcB/1o=">AAACvnichVG7TsMwFD2E97MFFiSWiqoIlsoBJBBTBQyMvNoiUVQlwQWLJI4St2qp+AF+gIEJBAPiM1gYWBn4BMQIEgsDN2kkBAi4luPr43uuj3NMzxaBYuyxTWvv6Ozq7unt6x8YHEokh0cKgaz6Fs9b0pb+tmkE3BYuzyuhbL7t+dxwTJsXzcPl8LxY434gpLulGh7fdYx9V1SEZSiCysmEN1VSB1wZJUfspVamy8k0y7IoUj8TPU7SiGNNJu9Rwh4kLFThgMOFotyGgYDGDnQweITtokmYT5mIzjmO0UfcKlVxqjAIPaTvPu12YtSlfdgziNgW3WLT9ImZQoY9sGv2wu7YDXti77/2akY9Qi0NWs0Wl3vlxMnY5tu/LIdWhYNP1p+aFSpYiLQK0u5FSPgKq8WvHZ2+bC5uZJqT7II9k/5z9shu6QVu7dW6WucbZ3/oMUlL+Mcyv1Yo1Ol+GTkQ4Jis1L8b9zMpzGT12ezM+lw6txSb2oNxTGCKnJtHDqtYQz5y9wyXuNJyWkVzNNkq1dpizii+hFb/AL0EnvQ=</latexit> p(✓ | D) ・・・ ・分布の偏り、鋭さ 地震研 サマースクール ✓ˆ ✓ <latexit sha1_base64="6L/sfM20+IbPGS/8f9cvkF/lmnE=">AAALiHicbdbLctowFAZgp9c0lDZpl90wJYtkEQbSTpPuEnK/kwuXJGIyspFBwbIdW4DB4z5Dt+2b9W1qDJNjfOwN0vn0y+DBklTb4K4sFv/NvXj56vWbt/PvFjLvsx8+Li59qrlWz9FYVbMMy2mo1GUGN1lVcmmwhu0wKlSD1dXuztjrfea43DJv5NBmTUHbJte5RmVYqhHZYZI+LOaLhWJ05XCjNG3klelVeVhaMEjL0nqCmVIzqOvel4q2bPrUkVwzWJAlPZfZVOvSNrsPmyYVzG360dcNcnH1qXDdoVCDZFFQ2UnMI/XNps9NuyeZqc0GpKdbpnSDbJaYbKBZQlCz5RPqtAX1Ap+MZ7NsnzgiF9Z+jYvE4IKPIyjBzZREWHxOZEmL6aTPtJV8aTUcqlqeT1TLaI1DueV8aTl4HkSx0zFPVMWqgmpYNdAW1hYow8pAdaw6aBtrG7SDtQPKsXLQR6yPoF2sXVADqwEqsApQE6sJamG1QG2sNugT1idQB6sD6mJ1QSVWCdrD2gPtY+2DDrAOQD2sHugQ6xB0hHUUexm2MW9DuIy1DLqDdQd0F+su6B7WPdB9rPugB1gPQA+xHoIeYT0CPcZ6DHqC9QT0FOsp6BnWM9BzrOegF1gvQCtYK6CXWC9Br7BegV5jvQa9wXoDWsVaBa1hrYHWsdZBG1gboLdYb0HvsN7FXoYRc1IWnmJsWRKsnbJ9kKgeW0V4uMmlDIvqseVkvNOnDIvqsVU2PDu00sZNIPaqp083mpnNS9kOiBfbENInmZlDpCx1RMQWuzYVqQ8gqsduZbvcsFJ2AjKV2L8telbhGD1Hojb8S6OHPZGoHSTPHI6wTBaMP1dIxw0PKMwvlDaZCPhsdzVI5uTASuSKUY7P9lOCHYdNb/k8dm0aTvZxWg/Pkunhfqz/I/XOOu8nf2s0sj/bxUGXe7O5tUQw9n2z4fm0lDyN4kZtvVD6Vli//J7fKk9PqvPKF+WrsqKUlA1lSzlUKkpV0ZRH5bfyR/mbWcgUMxuZn5OhL+ammc/KzJUp/we42Ss6</latexit> <latexit sha1_base64="ehxCx+d3pIESsKl7ZfcPjJ0tcZ8=">AAALjnicbdbLctowFAZgJ72lobRJu+yGKVkkizCQdtJsOs095E4uEJKIychGBgXLdmwBBo/7GN22r9W3qTFMjvGxN0jn0y+DB0tSbYO7slj8NzP74uWr12/m3s5n3mXff1hY/Fhzra6jsapmGZZTV6nLDG6yquTSYHXbYVSoBrtROzsjv+kxx+WWeS0HNmsI2jK5zjUqwxIhbSp9IttM0uBhIV8sFKMrhxulSSOvTK7Kw+K8QZqW1hXMlJpBXfe+VLRlw6eO5JrBgizpusymWoe22H3YNKlgbsOPvnSQi6tPhesOhBoki4LKdmIeqW80fG7aXclMbTogPd0ypRtks8Rkfc0SgppNn1CnJagX+GQ0m2X7xBG5sPZrVCQGF3wUQQlupiTC4nMiS5pMJz2mLedLK+FQ1fJ8olpGcxTKLeVLS8HzIIqdjnisKlYVVMOqgTaxNkEZVgaqY9VBW1hboG2sbVCOlYM+Yn0E7WDtgBpYDVCBVYCaWE1QC6sFamO1QZ+wPoE6WB1QF6sLKrFK0C7WLmgPaw+0j7UP6mH1QAdYB6BDrMPYy7CFeQvC21i3QXew7oDuYt0F3cO6B7qPdR/0AOsBaBlrGfQQ6yHoEdYj0GOsx6AnWE9AT7Gegp5hPQM9x3oOWsFaAb3AegF6ifUS9ArrFeg11mvQKtYqaA1rDfQG6w1oHWsd9BbrLegd1rvYyzBkTsrCU4wtS4K1UrYPEtVjqwgPN7mUYVE9tpyMtvqUYVE9tsqGJ4hm2rgxxF719OmGU7N5KdsB8WIbQvokU3OIlKWOiNhi16Ii9QFE9ditbJcbVspOQCYS+7dFzyoco+dI1IZ/afSwxxK1g+SZwxGWyYLR5zJpu+EBhfmF0gYTAZ/urgTJnOxbiVwxyvHpfkqw7bDJLZ/Hrk7CyT5O6+GJMj3ci/XXU++s817yt0Yje9NdHHS5N51bTQRj3zcbnk9LydMobtTWCqWvhbWLb/nN7clJdU75rHxRlpWS8l3ZVMpKRakqmmIrv5U/yt/MQmY98yPzczx0dmaS+aRMXZnyf3FaLgc=</latexit> c 伊藤伸一 16/21

18.

Outline 1. 導入:断層すべりと摩擦特性 2. 手法:変分法データ同化 3. 解析:摩擦空間特性の不確実性評価 4. まとめ 地震研 サマースクール c 伊藤伸一 17/21

19.
[beta]
摩擦空間特性の不確実性評価(私の研究紹介)
豊後水道 LSSE model
Hirahara and Nishikiori (2019)

{
<latexit sha1_base64="H6hgW2UPuyTeXlurJ5jRNw1vdhc=">AAADwHicxVI9TxtBEH3mkmAgCTg0SDQolqNU1hohgqgQNJRgMCABQnfHGk6+r9ytTcyJP4BoEwoqkCgQP4OGP5CCn4AoiZQmBe/WF0WEAGXmdLszb+fNzO6MFbpOrIS4ynUZL16+6s739Pa9fvO2f6DwbikOmpEta3bgBtGKZcbSdXxZU45y5UoYSdOzXLlsNWbS8+WWjGIn8BdVO5TrnrnlO3XHNhWh6lqyMVAUZaFl5KFSyZQiMpkLCrlFrGETAWw04UHCh6LuwkTMbxUVCITE1pEQi6g5+lxiD73kNukl6WESbXDdorWaoT7tNGas2TazuPwjMkdQEt/FmbgVl+JcXItfj8ZKdIy0ljZ3q8OV4Ub//tDCz2dZHneF7T+sJ2tWqGNC1+qw9lAj6S3sDr+1e3i7MFktJR/Eibhh/cfiSlzwBn7rh306L6tH/yl6wnfxdD9Kj3oofGH+QPc3znrn82RH98XTL+VzEhLiEa1N+qT67xdMsUSjT3Mt5rnPtJg30ehzzPY/me0Ok7Nd+XuSHypLo+XKeHlsfqw4NZ1NeR7DeI+PnORPmMIs5lBj9joO8BXfjGlj2wiMzx3XrlzGGcQ9MXbvAGnY2Q8=</latexit>

速度ー状態依存摩擦則
<latexit sha1_base64="0o8QTSYemkNYuwrVKhd5a9dH1Ks=">AAAD/HicxVJNT9RQFD1D/UD8YNANiZvGyRCIZvKGEDVGE8SNS74GSCiZtOUxNPQr7ZuRsZEf4B9w4UqiC0Pc+gfcsNXEBT/BuMTEjQtO35QQRGDpa9p33rn33Hv77nVi30uVEHulPuPCxUuX+68MXL12/cZgeejmQhq1E1c23MiPkiXHTqXvhbKhPOXLpTiRduD4ctHZeJbbFzsySb0onFfdWK4Ediv01jzXVqSa5ceWstujlrN5T42ZT8ynORyz/Khldg7Zu+bUEWupdanswtQsV0RN6GWeBPUCVFCs6WioNA8Lq4jgoo0AEiEUsQ8bKZ9l1CEQk1tBRi4h8rRd4hUGqG3TS9LDJrvBb4un5YINec5jplrtMovPN6HSRFV8Fx/FvtgVO+KH+HNqrEzHyGvpcnd6Whk3B18Pz/0+VxVwV1g/Up1Zs8IaHupaPdYeayb/C7en77x8sz/3aLaajYht8ZP1vxN74gv/IOz8cj/MyNm3/yl6xnsJdD+qp3oobDJ/pPubFr0LaXmh+xLomwo5CRn5hKdV+uT48AZzLtPs2VqHeY4rHebNNHuesvtPZben5GzX/57kk2BhvFa/X5uYmahMThVT3o/buINRTvIDTOI5ptFg9m3s4iu+GVvGe2PH+NRz7SsVmls4tozPB/Wq7aU=</latexit>

⌧ (x, t) = A(x) log v(x, t) + B(x) log ✓(x, t)

Notation

x = (X, Y )>
<latexit sha1_base64="5dacfQWuafX1KYITsussZk7uFPA=">AAAD0nicxVJNTxRBEH3LiCJ+sOCFxMvGzRpMyKbXEDAmJkQuHvnYhTUsbmaGBibMV2Z6110mHAg3492DiYkmBgg/w4t/wAM/wXjExIsH3/QOMYjAkZpMd9XrelXVXWWFrhMrIY5yfca1/us3Bm4O3rp95+5QfnhkMQ5akS1rduAGUd0yY+k6vqwpR7myHkbS9CxXLlmbM+n5UltGsRP4VdUN5YpnrvvOmmObilAzP9KwOoVnhbH6+MtHr5KGCsLtZr4oykJL4axSyZQiMpkNhnNVNLCKADZa8CDhQ1F3YSLmt4wKBEJiK0iIRdQcfS6xjUFyW/SS9DCJbnJdp7WcoT7tNGas2TazuPwjMgsoiW/iQByLr+JQfBe/z42V6BhpLV3uVo8rw+bQm9GFX5eyPO4KG39ZF9assIYnulaHtYcaSW9h9/jtrXfHC0/nS8lD8Un8YP0fxZH4whv47Z/25zk5//6Koid8F0/3o3Suh0KH+QPd3zjrnc+T17ovnn4pn5OQEI9ordIn1U9eMMUSjV7MtZjnNNNi3kSjlzG7/2V2e0zOduXfST6rLD4uVybLE3MTxenn2ZQP4D4eYIyTPIVpvMAsaszewQfsYd+oGlvGjrHbc+3LZZx7OCXG2z+uxd7v</latexit>

Aging 則

v : Slip velocity
<latexit sha1_base64="gP7u9a7XWLEtdQaoNfEGPENAAWw=">AAADv3icxVI9T9xAEH2HSUIgBAhNpDQop0NUpz2ECKIiSUPJAQdIBCHbLId19tqy9y5xrPyBpAVRUCVSiig/g4Y/QMFPiFISKU0KnvccIb5LxvLuzNt5M7M740S+l2ghTko9Vu+Dh4/6HvcPPBl8OjQ88mwlCduxKxtu6IfxmmMn0veUbGhP+3ItiqUdOL5cdVpv8/PVjowTL1TLOo3kRmA3lbftubYmVO9sDpdFVRgZu6rUCqWMQhbCkdIy3mELIVy0EUBCQVP3YSPht44aBCJiG8iIxdQ8cy7xCf3ktukl6WETbXFt0lovUEU7j5kYtsssPv+YzDFUxLH4IU7Fkfgpfol/N8bKTIy8lpS70+XKaHPo8/Olv3eyAu4aO+esW2vW2MaMqdVj7ZFB8lu4XX7n4/7p0uxiJRsX38Rv1v9VnIhD3kB1/rjf63Lx4J6iZ3yXwPSjcqOHxgfmD01/k6J3iifvTV8C81KKk5ARj2lt0SfX/79gjmUGvZ3rMM9FpsO8mUHvYqbXMtMuk7NduzzJV5WVyWptujpVnyrPvSmmvA8v8BITnORXmMM8FtBgdokv2MWe9dpqWsqKuq49pYIzigtipWf9KNik</latexit>

✓ : State variable
K, k : Green’s functions

<latexit sha1_base64="RvD9U9hkM6vGakVQc5qqhCbkTYM=">AAAD/XicxVJNT9RQFD1D/UAEGXRj4qZxMgQSnLwSosaEhOjGhQuYYYCEkknbeQMN/Ur7ZmR8mbj3D7hwpYaF0bjlB7DRrcYFP8G4xMSNC29fSwhfM0tf075zz7vn3tt3rx15biIYOygMaZcuX7k6fG3k+ujYjfHixM2VJGzHDq87oRfGa7aVcM8NeF24wuNrUcwt3/b4qr39JD1f7fA4ccNgWXQjvuFbm4Hbch1LENUozpvNUEhTbHFh9aZMe2dGTOvzunHPbMWWIzs5lTnoudWTz1I03WsUS6zC1NLPAiMHJeRrMZwoLMNEEyEctOGDI4Ag7MFCQs86DDBExG1AEhcTctU5Rw8jpG2TFycPi9ht+m6StZ6zAdlpzESpHcri0RuTUkeZ/WAf2CH7wj6yn+zvhbGkipHW0qXdzrQ8aoy/ul37M1Dl0y6wdazqW7NACw9VrS7VHikm/Qsn03devD6sPaqW5SR7x35R/W/ZAdunPwg6v53dJV5985+iS7oXX/WjfKGHwA7lD1V/k7x3AZ08V33x1U0FNAmS+JisJvmk+OgGU04qtr/WpjwnlTbllYodpOyeq+xmSppt4/QknwUrsxXjfmVuaa608Dif8mHcwV1M0SQ/wAKeYhF1yv4eX/EN37WX2q72SfucuQ4Vcs0tnFja3j+14u/X</latexit>

釣り合い方程式
<latexit sha1_base64="HTqpzD8Fv8erV1D5Dk7ROECf390=">AAAEZnicxVLNbtNAEB63BkopbQpCIHFZEYUmKo02VQWIH6mCCxKX/qWtFEeR7WzSVdY/sjchYeUX4AU4cAIJJMRjcOEFOPQNQByLxIUD47ULKv07di17Z7/5vpnxzjih4LGkdNcYGzfPnb8wcXHy0tTl6ZnC7JXNOOhHLqu7gQiibceOmeA+q0suBdsOI2Z7jmBbTu9p6t8asCjmgb8hRyFrenbX5x3u2hKhVuGD1Q6ksqTdT8qWM7wjK+QxWSAWkzYZ7CPzxOK+JG08zhFLsI5skOfamSKVDLJUJphDxcKghTHZUKpQJIkV8e6OtJJ50tOEiuaX/3JE4PaS5CgNhtZ7s1Uo0irVixw2arlRhHytBLPGBljQhgBc6IMHDHyQaAuwIcanATWgECLWBIVYhBbXfgYJTKK2jyyGDBvRHn67eGrkqI/nNGas1S5mEfhGqCRQol/pR7pHv9BP9Dv9fWwspWOktYxwdzItC1szr26s/zpV5eEuYeef6sSaJXTgvq6VY+2hRtK/cDP94OXrvfUHayV1m76jP7D+t3SXfsY/8Ac/3ferbO3NGUVXeC+e7kfpWIaEIeYPdH/jvHc+el7ovnj6pnycBIV4hKc2clJ7/wZTTGn0ZK2DeQ4qHcyrNHqacnSkcpQpcbZr/0/yYWNzsVq7W11aXSouP8mnfAJuwi0o4yTfg2V4BitQB9eYMhaNh8aj8W/mtHnNvJ5Rx4xccxUOLJP8AZSKEiw=</latexit>

⌧˙ (x, t) =

⌘v(x, t) +

<latexit sha1_base64="Rhkt08J1EUV+8PsswEF6XjsnMYc=">AAADxHicxVJLSxxBEP7WSaIxD129BLxIlhVPS6+IiqdFQXL0taugIjNjq6PzYqZ3dR30B3jKTUxOCh5CfkYu/gEP/oSQo4FcPPhN70gwvo6pYbqrvq6vqrqrrNB1YiXEZa7NePHyVXvH6843b9+97+rO99TioB7ZsmoHbhAtWmYsXceXVeUoVy6GkTQ9y5UL1vZker7QkFHsBP68aoZyxTM3fGfdsU1FqLasNqUyV7sLoiS09N9XyplSQCbTQT43j2WsIYCNOjxI+FDUXZiI+S2hDIGQ2AoSYhE1R59L7KOT3Dq9JD1MottcN2gtZahPO40Za7bNLC7/iMx+FMWF+CauxLn4Ln6K60djJTpGWkuTu9XiynC16/DD3J9nWR53hc2/rCdrVljHmK7VYe2hRtJb2C1+Y+/oam58tpgMiFPxi/WfiEvxgzfwG7/tsxk5+/U/RU/4Lp7uR/FRD4Vd5g90f+Osdz5PdnRfPP1SPichIR7RWqNPqt++YIolGn2aazHPXabFvIlGn2M2H2Q2W0zOdvnfSb6v1IZK5ZHS8MxwoTKRTXkH+vARg5zkUVTwCdOoMvsWPuMYX4wpwzVio95ybctlnF7cEePgBm4B2tI=</latexit>

<latexit sha1_base64="Wk0EDy5M1U6wmcRbR5QZdrqDnOo=">AAADwXicxVJLSxxBEP7WiW/jI7kIuYjLhhzC0htExZPoJZCLuq4KRmRmbDfNzouZ3jXrkD8QyDUeckrAg+RnePEP5OBPEI8KueTgN70Tgu9japjuqq/rq6ruKifyVKKFOC10WU+6e3r7+gcGh54Oj4yOPVtLwmbsypobemG84diJ9FQga1ppT25EsbR9x5PrTmMxO19vyThRYbCq25Hc8u16oHaVa2tC1XevG9ujRVEWRiZuK5VcKSKXpXCssIr32EEIF034kAigqXuwkfDbRAUCEbEtpMRiasqcS3zCALlNekl62EQbXOu0NnM0oJ3FTAzbZRaPf0zmBErilzgSF+JE/BRn4s+9sVITI6ulzd3pcGW0PfJ5vPr7UZbPXePDP9aDNWvsYtbUqlh7ZJDsFm6H39o/uKjOrZTSl+KHOGf938WpOOYNgtale7gsV779p+gp38U3/Sjd66HxkflD098k713Akz3TF9+8VMBJSInHtHbok+l/XzDDUoM+zHWY5zrTYd7UoI8x23cy2x0mZ7tyc5JvK2tvypXp8tTyVHF+IZ/yPrzAJF5xkmcwj7dYQo3Z6/iCrziwFi1lRVbcce0q5JznuCZWegW15Nkk</latexit>

⌘
<latexit sha1_base64="+GXQ/IRx73XKf05dtg8W5yerqKI=">AAADwnicxVJLLwRBEP7WeKznelwkLmKz4rTpFUGcNjg4rseyyRKZGY1hXmZ6lzX8AQfXlTiROIif4eIPOPgJ4kji4qCmd0S8j2oy3VVf11dV3VWaaxq+YOwuVqfUNzQ2xZtbWtvaOxKdXd2LvlPydJ7XHdPxCprqc9OweV4YwuQF1+OqpZl8SdueCs+XytzzDcdeEBWXr1jqhm2sG7oqQmiZC3W1M8nSTEr/VyUTKUlEknO6YgtYxhoc6CjBAocNQboJFT59RWTA4BK2goAwjzRDnnMcooW4JfLi5KESuk3rBlnFCLXJDmP6kq1TFpN+j5j9SLFbdske2Q27Yvfs5cdYgYwR1lKhXatxubuaOOqdf/6TZdEusPnO+rVmgXWMy1oNqt2VSHgLvcYv71cf5yfmUsEgO2cPVP8Zu2PXdAO7/KRfzPK503+KHtC7WLIfqR89BPYovyP760e9s+lkV/bFki9l0yQEhHtkrZFPqL+9YIgFEv2dq1Gej0yN8gYS/YtZ+ZZZqTFptjOfJ/mrsjiczoymR2ZHktnJaMrj6MMAhmiSx5DFDHLIU/ZNHKOKE2Va2VJ2FL/mWheLOD34IMrBKzpc2eI=</latexit>

: Damping parameter

vpl , vlock : Speeds of plates
<latexit sha1_base64="bPxqCFlyGgK6DL8kPtdjnJDMTLY=">AAAD3nicxVJLaxRBEP424yPGRzZ6EQRZXFY8yNIrQcVT0IvHvDYJJGGdmXSSYXsezPSuWZu5iQdBPCp4UvCgHvUfePEPeMhPEI8RvHjwm95RiTHJ0R6mu+rr+qqqq8pLVJBpIbYrI86Ro8eOj54YO3nq9Jnx6sTZhSzupb5s+7GK0yXPzaQKItnWgVZyKUmlG3pKLnrdO8X9Yl+mWRBH83qQyNXQ3YiC9cB3NaFO9WK/Y1a03NImUXl+tfZbVbHfzfNOtS6awq7aXqFVCnWUazqeqMxjBWuI4aOHEBIRNGUFFxm/ZbQgkBBbhSGWUgrsvUSOMXJ7tJK0cIl2uW9QWy7RiHrhM7Nsn1EU/5TMGhris3gjdsQn8U58ET/29WWsjyKXAU9vyJVJZ/zx+bnvh7JCnhqbf1gH5qyxjps214C5JxYpXuEP+f0Hz3bmbs02zGXxSnxl/i/FtvjIF0T9b/7rGTn74j95N6xLaPvR2NdCY4vxY9vfrOxdxJv7ti+hrVTESTDEU2prtCnkXxUsMGPRg7ke4+xmeoxrLHoYc/BP5mDI5Gy3/p7kvcLCtWbrenNyZrI+dbuc8lFcwCVc4STfwBTuYhptRn+It3iPD84955HzxHk6NB2plJxz2LWc5z8BlRfmHg==</latexit>

Z

dx0 [K(x, x0 ) {v(x0 , t)

vpl } + k(x0 ) (vlock

vpl )]

Slip velocity

興味のあるパラメータ場

A(x), B(x), L(x)

既存研究では、パッチ的なパラメータ場に制約していた。
→ 原理的にパッチ的な不確実性しか得られない。

<latexit sha1_base64="RiOxOi+Aigg/w08Ttms07/zVG1g=">AAADynicxVJLTxRBEP6W8YEI8vBi4oWwWYKXTa8hSjgRvHDwwGsBwxIyMzQw2Xllpndh6HDz5A/AgwfBxIPxZ3jxD3DgJxiPmHjx4De9YwggcKQm0131dX1V1V3lxL6XKiFOSl3Wnbv37nc/6HnY2/eof2BwaCmNWokr627kR8mKY6fS90JZV57y5UqcSDtwfLnsNF/l58ttmaReFC6qLJZrgb0VepueaytCjTdjDSV3lW4G+8/WB8qiKowMX1ZqhVJGIbPRYGkRDWwggosWAkiEUNR92Ej5raIGgZjYGjSxhJpnziX20UNui16SHjbRJtctWqsFGtLOY6aG7TKLzz8hcxgVcSy+iFPxXXwVP8SfK2NpEyOvJePudLgyXu9/92Th942sgLvC9hnr2poVNjFhavVYe2yQ/BZuh9/ee3+6MDlf0aPik/jJ+o/EifjGG4TtX+7nOTn/4Zaia75LYPpRudJDYZf5I9PftOhdyJMd05fAvFTISdDEE1ob9Mn1fy+YY9qg13Md5jnPdJhXG/QmZvZfZtZhcrZrFyf5srL0vFp7UR2fGy9PTRdT3o2nGMEYJ/klpjCDWdSZPcYBPuLQem0lVmbpjmtXqeA8xjmx3v4FqVDdNw==</latexit>

<latexit sha1_base64="8ypG668XElm85cuBo3k4luzJaqQ=">AAAD1HicxVI7TxRRFP6WEUTksaCFiQ1xswQSs7lriBIrxMbCgtcuJEA2M8NdmDCvzNxdWUYrY2Nha2GjJhbAz7DxD1jwE4wlJjQUfHNnjOFdeidzz7nfPd85555zrNB1YiXEQaHLuNHdc7P3Vt/t/oHBoeLwSD0OWpEta3bgBtGyZcbSdXxZU45y5XIYSdOzXLlkbT1P75faMoqdwF9UnVCueeaG7zQd21SEGsW7z8ZXre2JhzOZeKlFo1gSFaHX6Hmlmisl5Gs2GC4sYhXrCGCjBQ8SPhR1FyZifiuoQiAktoaEWETN0fcSb9BHbotWkhYm0S3uGzyt5KjPc+oz1mybUVz+EZmjKIufYlccih9iX/wSx5f6SrSPNJcOpZVxZdgYen9v4ehalkepsPmPdWXOCk1M6Vwd5h5qJH2FnfHbOx8PF57Ol5Mx8VX8Zv5fxIH4zhf47T/2tzk5/+k/eU9YF0/3o3yphcI24we6v3HeO583r3RfPF0pn5OQEI94WqdNqv+tYIolGr2aazHOaabFuIlGr2N2LmR2MiZnu3p2ks8r9UeV6uPK5NxkaXomn/Je3McDjHOSn2AaLzCLGqPv4DN2sWfUjdfGW+NdZtpVyDl3cGoZH04AeHLe2Q==</latexit>

v
<latexit sha1_base64="gP7u9a7XWLEtdQaoNfEGPENAAWw=">AAADv3icxVI9T9xAEH2HSUIgBAhNpDQop0NUpz2ECKIiSUPJAQdIBCHbLId19tqy9y5xrPyBpAVRUCVSiig/g4Y/QMFPiFISKU0KnvccIb5LxvLuzNt5M7M740S+l2ghTko9Vu+Dh4/6HvcPPBl8OjQ88mwlCduxKxtu6IfxmmMn0veUbGhP+3ItiqUdOL5cdVpv8/PVjowTL1TLOo3kRmA3lbftubYmVO9sDpdFVRgZu6rUCqWMQhbCkdIy3mELIVy0EUBCQVP3YSPht44aBCJiG8iIxdQ8cy7xCf3ktukl6WETbXFt0lovUEU7j5kYtsssPv+YzDFUxLH4IU7Fkfgpfol/N8bKTIy8lpS70+XKaHPo8/Olv3eyAu4aO+esW2vW2MaMqdVj7ZFB8lu4XX7n4/7p0uxiJRsX38Rv1v9VnIhD3kB1/rjf63Lx4J6iZ3yXwPSjcqOHxgfmD01/k6J3iifvTV8C81KKk5ARj2lt0SfX/79gjmUGvZ3rMM9FpsO8mUHvYqbXMtMuk7NduzzJV5WVyWptujpVnyrPvSmmvA8v8BITnORXmMM8FtBgdokv2MWe9dpqWsqKuq49pYIzigtipWf9KNik</latexit>

Y (km)

˙ t) = 1
✓(x,

v(x, t)✓(x, t)
L(x)

<latexit sha1_base64="ZPVqY7MykWZuyoUvp/K5MAQEwGI=">AAADynicxVJNTxRBEH3LqCCogF5MvBA3S/Cy6TUEjSeiFw8e+FrYhCVkZmhwsvOVmd6VscPNEz8ADx74SDwQfoYX/4AHfoLhCAkXDrzpHWIQgaM1me6q1/WqqrvKiX0vVUIclnqsO3fv9fbd7x948PDR4NDw4/k0aieurLuRHyUNx06l74Wyrjzly0acSDtwfLngtN7l5wsdmaReFM6pLJZLgb0WequeaytCzcZYU8l1pVvBxovlobKoCiMjV5VaoZRRyFQ0XJpDEyuI4KKNABIhFHUfNlJ+i6hBICa2BE0soeaZc4kN9JPbppekh020xXWN1mKBhrTzmKlhu8zi80/IHEFF/BL74lj8FAfitzi7NpY2MfJaMu5Olyvj5cHNp7Ont7IC7gof/7BurFlhFa9NrR5rjw2S38Lt8jufvx7Pvpmp6FGxJ45Y/644FD94g7Bz4n6fljPf/lN0zXcJTD8q13oorDN/ZPqbFr0LefLJ9CUwLxVyEjTxhNYKfXL94gVzTBv0Zq7DPJeZDvNqg97GzP7JzLpMznbt70m+qsy/rNYmquPT4+XJt8WU9+EZnmOMk/wKk3iPKdSZPcYWtrFjfbASK7N017WnVHCe4JJYX84BperdNg==</latexit>

X(km)

→ すべり運動の詳細を調べるには制約のない高解像の不確実性評価の方法が必要不可欠

地震研 サマースクール

c 伊藤伸一

18/21

20.

摩擦特性分布不確実性の高解像評価 得られた不確実性の場 問題設定 仮定した摩擦パラメータの場: 100km 35km (a) 120km (b) データ: 時間窓 (a)—(d) における すべり速度 のスナップショット v <latexit sha1_base64="gP7u9a7XWLEtdQaoNfEGPENAAWw=">AAADv3icxVI9T9xAEH2HSUIgBAhNpDQop0NUpz2ECKIiSUPJAQdIBCHbLId19tqy9y5xrPyBpAVRUCVSiig/g4Y/QMFPiFISKU0KnvccIb5LxvLuzNt5M7M740S+l2ghTko9Vu+Dh4/6HvcPPBl8OjQ88mwlCduxKxtu6IfxmmMn0veUbGhP+3ItiqUdOL5cdVpv8/PVjowTL1TLOo3kRmA3lbftubYmVO9sDpdFVRgZu6rUCqWMQhbCkdIy3mELIVy0EUBCQVP3YSPht44aBCJiG8iIxdQ8cy7xCf3ktukl6WETbXFt0lovUEU7j5kYtsssPv+YzDFUxLH4IU7Fkfgpfol/N8bKTIy8lpS70+XKaHPo8/Olv3eyAu4aO+esW2vW2MaMqdVj7ZFB8lu4XX7n4/7p0uxiJRsX38Rv1v9VnIhD3kB1/rjf63Lx4J6iZ3yXwPSjcqOHxgfmD01/k6J3iifvTV8C81KKk5ARj2lt0SfX/79gjmUGvZ3rMM9FpsO8mUHvYqbXMtMuk7NduzzJV5WVyWptujpVnyrPvSmmvA8v8BITnORXmMM8FtBgdokv2MWe9dpqWsqKuq49pYIzigtipWf9KNik</latexit> (c) 上の動画を ———— で切った断面図 (d) ・単純形状の摩擦特性にも関わらず、 複雑な不確実性の場が得られる. ・活発な地震活動を含むデータは、 不確実性を大幅に小さくする. → 効率的な高精度化への指針 地震研 サマースクール c 伊藤伸一 19/21

21.

摩擦特性分布不確実性の高解像評価 得られた不確実性の場 問題設定 仮定した摩擦パラメータの場: 100km 35km (a) 120km (b) データ: 時間窓 (a)—(d) における すべり速度 のスナップショット v <latexit sha1_base64="gP7u9a7XWLEtdQaoNfEGPENAAWw=">AAADv3icxVI9T9xAEH2HSUIgBAhNpDQop0NUpz2ECKIiSUPJAQdIBCHbLId19tqy9y5xrPyBpAVRUCVSiig/g4Y/QMFPiFISKU0KnvccIb5LxvLuzNt5M7M740S+l2ghTko9Vu+Dh4/6HvcPPBl8OjQ88mwlCduxKxtu6IfxmmMn0veUbGhP+3ItiqUdOL5cdVpv8/PVjowTL1TLOo3kRmA3lbftubYmVO9sDpdFVRgZu6rUCqWMQhbCkdIy3mELIVy0EUBCQVP3YSPht44aBCJiG8iIxdQ8cy7xCf3ktukl6WETbXFt0lovUEU7j5kYtsssPv+YzDFUxLH4IU7Fkfgpfol/N8bKTIy8lpS70+XKaHPo8/Olv3eyAu4aO+esW2vW2MaMqdVj7ZFB8lu4XX7n4/7p0uxiJRsX38Rv1v9VnIhD3kB1/rjf63Lx4J6iZ3yXwPSjcqOHxgfmD01/k6J3iifvTV8C81KKk5ARj2lt0SfX/79gjmUGvZ3rMM9FpsO8mUHvYqbXMtMuk7NduzzJV5WVyWptujpVnyrPvSmmvA8v8BITnORXmMM8FtBgdokv2MWe9dpqWsqKuq49pYIzigtipWf9KNik</latexit> (c) 上の動画を ———— で切った断面図 (d) ・長時間の同化は不確実性を小さくする ことができる. (計算量は増える) ・活発な地震活動データが取り込まれる と不確実性は大幅に下がる. 地震研 サマースクール c 伊藤伸一 20/21

22.

まとめ ・断層すべり運動と摩擦について ・大規模モデルのための変分データ同化について ・変分法データ同化による摩擦空間特性評価の研究紹介 ・午後の演習では変分データ同化を簡単なモデルへ適用した デモプログラムを通じて変分データ同化にふれてみる 地震研 サマースクール c 伊藤伸一 21/21

23.

Adjoint法による勾配計算:解ける非線形方程式を例として ・厳密に解ける方程式でadjointモデルを解いてみる ・ロジスティック方程式 <latexit sha1_base64="3bhObrg3i03vo4Agu7bb+kqOHzg=">AAANmHictZfNbtNAEICHfyiEFrgguESUIjgQbQKBCgmplANUQYj+QtW0ke2sGxPHjuxt2tTKC/ACHJCQQOKAeAw4cIEbBx4BcSwSFw7Mjm0a0zhrDtiyvTs73+zM7HrX1tu25QvGvu7bf+DgocNHjh4bOX4id3J07NTpJd/d8Ay+aLi26z3RNZ/blsMXhSVs/qTtca2l2/yx3rwr2x93uOdbrrMgum2+2tLWHcu0DE2gqDY2WTU9zQjqvaAuelu1QPTyt/MeFao2N8Xl4tVQg0S9oNKretZ6Q1ypjY2zQolNlsvl/N5CscDoGIfoeOSeOnwRqlAHFwzYgBZwcEBg2QYNfDxXoAgM2ihbhQBlHpYsaufQgxFkN1CLo4aG0ibe17G2EkkdrEubPtEG9mLj5SGZhwn2hb1lO+wje8e+sV+ptgKyIX3p4lMPWd6ujT47O/9TSbXwKaCxSykJEz2UOfApvolU7diyzE0LtqiHkaEZEWh7kjJhYQ9tksgcGaF3ne3nO/O35iaCS+w1+47ZecW+sveYH6fzw3gzy+de/Hfr6dEKjDCZmTRNHbMR50Lac1C6SWPfopw5ONsClHtYq6OmLMe5lLKApL0ol2m0ThnvZ3X0LyBpT0F2B5JdJan2eDgbeywzlKeaithOENsZCD1B6AqijjGE+ibSchzTYhssF8q4lxP+LCu0lwaOzJKylzsDuTtKbnogN63kKhExiK4o6QatiD6toP28T/x9Jf8AT0mGrI7tW1GOTczxA+KHW3g4hH+Yga8M4SsZ+Cae6RaaGSzMDOFnMvAutfh7RlCnuV1U8tso91Ca7gXL4EWHeuV41yJP+usqUsMVOKbCsmp1ELj/9r+PVfTYysBpWH76F2nTfqlji8pXj/ZV90+MsYUscUq2m+C6ypHVqbc2jZAc1/CLY9fC/Qx9biaIzQyEmSDMDEQjQTQyEJ0E0VEQFp7xfuWitsyHT1kP5wzH0Rf0vVCga3el97HeyrCncazFM6r/HQpgTknXqY9wT3Qy6YbzoJVJN44g3KeG6YtoxiSjMCiyABZQvvZXvmJ9VYQ+PmXvK3CNvsv6d9kAxmmVWYMSlUtR7mO5fF6Lnv31tT8+tzN7IL8HbbrzPm8GeSCJ8Mu/8c+ejOC/R/yDkU8vLJUKxRuF8uz18anp6C/kKJyHC3AZrd+EKXw7H8EixvISPsAn+Jw7l5vK3cvNhKr790XMGUgcubnfL0PZDQ==</latexit> { <latexit sha1_base64="Dx1T5H2n8ictLMRG6eBdQlgT/no=">AAANYHictZc/b9NAFMBf+VNKaGgLC4IlIhQxRZeUQMXUlqVVqqpN27RV/8lOLo2JY0e2mzax+gUQKzAwgcSA+BgsfAGGrmyIsUgsDLx7ttu4jXNmwJbtu3fv9+69d+c7W23qmu0wdjxw6fKVq4PXhq4nbgwnb46Mjt0q2ea+VearZVM3rXVVsbmuGXzV0RydrzctrjRUna+p9eeifa3FLVszjRWn3eTbDWXP0KpaWXFQVNxyd0fTLJNjk/l8PnWxkM0wOtLgH4vm2OAD2IIKmFCGfWgABwMcLOuggI3nJmSBQRNl2+CizMKSRu0cjiCB7D5qcdRQUFrH+x7WNn2pgXVh0ya6jL3oeFlIpmCcfWOf2An7yj6zH+xPpC2XbAhf2vhUPZY3d0de3ln+LaUa+HSgdkZJiSp6KHJgU3zjkdqBZZGbBhxSD4m+GXHQ9iRlQsMemiQROSp73rU6b0+WnxXH3YfsA/uJ2XnPjtkXzI/R+lX+uMSL7/679ehoHYwwnJkoTRWzEeRC2DNQekBj36CcGTjbXJRbWKugpigHuRQyl6RHfi6jaJUy3s2q6J9L0iMJ2e5JtqWk3OP+bOCxyFCKajKiEyI6MQg1RKgSooIxePpVpMU4RsXWW+5I494I+bMh0S71HJmStJfpnty0lJvpyc1IuYJP9KILUrpGK6JNK2g3bxM/K+Xn8RSkx6rYfujnuIo5nie+v4WFPvxCDL7Qhy/E4Ot4Rluox7Aw14efi8Gb1GJfGEGV5nZWyndQbqE02gsWw4sW9crxrviedNdlpIIrcEB5Zdnq4OD+2/0+bqHHWgxOwfKLc6RO+6WKLTJfLdpXzdMYAwtx4hRsO8S1pSOrUm9NGiExrt4Xx5mF2Rh9HoSIgxhENURUYxC1EFGLQbRCREtCaHgG+5WJ2iIfNmXdmzMcR9+h74UMXWcrvY31Row9jWMtmFHd75ALRSldoT68PdGIpevNg0Ys3SACb5/qp+/4MyYcRZkic2EF5Tvn8hXoyyK08Sl634QJ+i7r3mVdSNMqswM5Kuf83Ady8Zzwn931nVOfm7E9EN+DOt15lze9PBCE9+Vf+2dPEvjvEfxgpKILpVwm+ySTX3qcnprx/0KG4B7ch0do/SlM4du5CKsYSxVewWt4M/w9OZQcSY55qpcGfOY2hI7k3b/hM8JX</latexit> 生物の個体数変化などを表す数理モデル ⇣ xt ⌘ d 厳密解 xt = rxt 1 Kert dt K xt = rt e + K/✓ x0 = ✓ r, K :既知の定数とする <latexit sha1_base64="XtWADnMbGUXitAx1pYo1TFyWGSE=">AAANinictZdLb9NAEICHAqWUhrZwQeISEYoQiLBJKU8htYUDVaqq9EnVl2x305g6dmRv06ZW/gAnbhw4gcQBcecKEhf+AIf+BMQRJC4cmB3bbQxx1hywZe/ueL7Zmdn1rq3XLNMTjO0f6Tp67Hj3iZ6Tvaf6Mqf7BwbPLHjOtmvwecOxHPeJrnncMm0+L0xh8Sc1l2tV3eKL+tYD+Xyxzl3PdOw50ajx1aq2aZtl09AEitYHruyu+6KZvZ9dKbua4Zf4mu+KZtMPyqul6yuiwoWWvVZorg/kWL7Ibo+MjGT/rhTyjI4chMe0M9h9EVZgAxwwYBuqwMEGgXULNPDwXIYCMKihbBV8lLlYM+k5hyb0IruNWhw1NJRu4X0TW8uh1Ma2tOkRbWAvFl4uklkYYl/YW/adfWbv2Ff2K9GWTzakLw0s9YDltfX+Z+dmfyqpKpYCKoeUkiijhzIHHsU3lKgdWZa5qcIu9dDbMSMCbd+mTJjYQ40kMkdG4F1978X32bszQ/4l9pp9w+y8YvvsE+bHrv8w3jzmMy//u/XkaAVGGM9MkqaO2YhyIe3ZKN2hsa9SzmycbT7KXWxtoKasR7mUMp+kzTCXSbROGW9ldfTPJ2lTQTbakg0lqfa4Mxt5LDOUpZaK2IsReykIPUboCmIDYwj0y0jLcUyKrb1cKONeivmzpNBeaDsyC8pextpyY0puvC03ruRKIdGOLinpCq2IHq2grbxH/CMlP4mnJANWx+e7YY7LmONJ4jtbmOrAT6XgSx34Ugp+C89kC1spLEx04CdS8A498f4aQZ3mdkHJ76HcRWmyFyyFF3XqleNdCz1pbatIDVfgiArqqtVB4P7b+j6uoMdmCk7D+tM/SIv2Sx2fqHx1aV91DmKMLKSJU7KNGNdQjqxOvdVohOS4Bl8chxYepehzJ0bspCDKMaKcgqjEiEoKoh4j6grCxDParxzUlvnwKOvBnOE4+oK+F/J0Ha70HrarKfY0jq1oRrW+Qz7MKOkN6iPYE+1UusE8qKbSjSII9qlO+iKcMfEoDIrMhzmUr/2Rr0hfFaGHpex9GYbpu6x1l/UhR6vMGhSpXgxzH8llORyWre21A59rqT2Q34MW3XmLN+08kETw5V/5Z0968d8j+sHIJlcWivnCzfzI4xu50fHwL6QHzsMFuIzWb8Eovp3TMI+xPIf38AE+ZvoyxcydzL1AtetIyJyF2JF5+BuRYtIM</latexit> <latexit sha1_base64="UwqABbhNrxJpQB/W3o9ugum6t8I=">AAANbHictZdbT9RAFIAPXhCRFVAfTIjJRoT4tJkFV4mJCeALBEK4X8It7TLL1u1l05aF3Wb/gH9AE58g8cH4M3zxD/jATzAmvmDiiw+eOW2hhe1OfbBN25kz5ztzzpnpTKtWdc1xGTvtuHb9xs3OW123u+/0ZO729vXfW3WsA7vIV4qWbtnrquJwXTP5iqu5Ol+v2lwxVJ2vqZXXon2txm1Hs8xlt17l24ayb2olrai4KNo52vVYM/squ+WWuavs9g2y3AgbKxQK2auFfI7RMQjBMW/1dz6BLdgDC4pwAAZwMMHFsg4KOHhuQh4YVFG2DR7KbCxp1M6hCd3IHqAWRw0FpRW872NtM5CaWBc2HaKL2IuOl41kFobYN/aJnbGv7DP7zv4k2vLIhvCljk/VZ3l1t/ftw6XfUsrApwvlC0pKlNBDkQOH4htK1A4ti9wYcEQ9dLfNiIu2xygTGvZQJYnIUdH3rtZ4d7b0cnHIG2Yn7Adm55idsi+YH7P2q/hxgS9++O/Wk6N1McJ4ZpI0VcxGmAthz0TpIY29QTkzcbZ5KLextoeaohzmUsg8kjaDXCbRKmU8yqron0fSpoSstyTrUlLucXs29FhkKEs1GdGIEY0UhBojVAmxhzH4+iWkxTgmxdZa7krj3oj5syHRXm05MqvSXiZachNSbrIlNynlZgKiFT0jpcu0Ijq0gkZ5h/gpKT+LpyB9VsX2oyDHJczxLPHtLcy14edS8DNt+JkUfAXPZAuVFBam2/DTKXiLWpwrI6jS3M5L+QbKbZQme8FSeFGjXjnelcCTaF1GKrgCh5Rflq0OLu6/0fdxCz3WUnAKlt9cInXaL1Vskflq075qnccYWkgTp2DrMa4uHVmVeqvSCIlx9b84LixMpejzMEYcpiBKMaKUgijHiHIKohYjahJCwzPcryzUFvlwKOv+nOE4+i59L+TouljpHawbKfY0jrVwRkXfIQ8WpfQe9eHviWYqXX8eGKl0wwj8faqdvhvMmHgURYrMg2WU71zKV6gvi9DBp+h9E0bpuyy6y3owSKvMDoxQeSTIfSgXz9HgGa3vnPtcTe2B+B7U6c4j3rTyQBD+l3/5nz3pxn+P8Acjm1xYHcnln+cKC88GxyeDv5AuGIDH8BStv4BxfDvnYQVjseE9HMNJz8/Mg8xA5pGveq0jYO5D7MgM/wVfI8bm</latexit> <latexit sha1_base64="jE+fZ3CPQLhK/ZBx+Hab7JPdsWU=">AAANYXictZe9b9NAFMBfC5Q2NPSDBalLRChiQNE1JVAxtWVplarqZ9qqX7KTS2Pi2JHtpk2s/gNIrHRgAokB8Wew8A8wdGZCjEViYeDds93GbZwzA7Zs3717v3fvvTvf2Wpd12yHsbOe3hs3b/Xd7h9I3BlM3h0aHhkt2OahVeTrRVM3rU1VsbmuGXzd0Rydb9YtrtRUnW+o1ZeifaPBLVszjTWnWee7NeXA0MpaUXFQtGo9ye8Pp1kmy6ZyuVzqemEiw+hIg38smSN9D2EHSmBCEQ6hBhwMcLCsgwI2ntswAQzqKNsFF2UWljRq53ACCWQPUYujhoLSKt4PsLbtSw2sC5s20UXsRcfLQjIF4+wb+8TO2Vf2mf1gfyJtuWRD+NLEp+qxvL4/9Pr+6m8pVcOnA5VLSkqU0UORA5viG4/UDiyL3NTgmHpIdM2Ig7anKBMa9lAnichR0fOu0To9X32xMu4+Yh/YT8zOe3bGvmB+jMav4sdlvvLuv1uPjtbBCMOZidJUMRtBLoQ9A6VHNPY1ypmBs81FuYW1EmqKcpBLIXNJeuLnMopWKePtrIr+uSQ9kZDNjmRTSso97s4GHosMpagmI1ohohWDUEOEKiFKGIOnX0ZajGNUbJ3ljjTurZA/WxLtQseRKUh7menIzUi52Y7crJTL+0QnOi+lK7Qi2rSCtvM28XNSfgFPQXqsiu3Hfo7LmOMF4rtbWOzCL8bg8134fAy+ime0hWoMC/Nd+PkYvEkt9rURVGluT0j5FsotlEZ7wWJ40aBeOd4V35P2uoxUcAUOKK8sWx0c3H/b38cd9FiLwSlYfnWF1Gm/VLFF5qtF+6p5EWNgIU6cgm2GuKZ0ZFXqrU4jJMbV++K4tDAXo8+jEHEUgyiHiHIMohIiKjGIRohoSAgNz2C/MlFb5MOmrHtzhuPoO/S9kKHrcqW3sV6LsadxrAUzqv0dcmFFSpeoD29PNGLpevOgFks3iMDbp7rpO/6MCUdRpMhcWEP53pV8BfqyCG18it63YZK+y9p3WRfStMrsQZbKWT/3gVw8J/1ne33vwud6bA/E96BOd97mTScPBOF9+Vf+2ZME/nsEPxip6EIhm5l4lsktP01Pz/p/If0wBg/gMVp/DtP4di7BOsZyAG/gLZwOfk8OJIeTo55qb4/P3IPQkRz7C/v5wnM=</latexit> 1 Kert xt = rt e + K/✓ r, K <latexit sha1_base64="XtWADnMbGUXitAx1pYo1TFyWGSE=">AAANinictZdLb9NAEICHAqWUhrZwQeISEYoQiLBJKU8htYUDVaqq9EnVl2x305g6dmRv06ZW/gAnbhw4gcQBcecKEhf+AIf+BMQRJC4cmB3bbQxx1hywZe/ueL7Zmdn1rq3XLNMTjO0f6Tp67Hj3iZ6Tvaf6Mqf7BwbPLHjOtmvwecOxHPeJrnncMm0+L0xh8Sc1l2tV3eKL+tYD+Xyxzl3PdOw50ajx1aq2aZtl09AEitYHruyu+6KZvZ9dKbua4Zf4mu+KZtMPyqul6yuiwoWWvVZorg/kWL7Ibo+MjGT/rhTyjI4chMe0M9h9EVZgAxwwYBuqwMEGgXULNPDwXIYCMKihbBV8lLlYM+k5hyb0IruNWhw1NJRu4X0TW8uh1Ma2tOkRbWAvFl4uklkYYl/YW/adfWbv2Ff2K9GWTzakLw0s9YDltfX+Z+dmfyqpKpYCKoeUkiijhzIHHsU3lKgdWZa5qcIu9dDbMSMCbd+mTJjYQ40kMkdG4F1978X32bszQ/4l9pp9w+y8YvvsE+bHrv8w3jzmMy//u/XkaAVGGM9MkqaO2YhyIe3ZKN2hsa9SzmycbT7KXWxtoKasR7mUMp+kzTCXSbROGW9ldfTPJ2lTQTbakg0lqfa4Mxt5LDOUpZaK2IsReykIPUboCmIDYwj0y0jLcUyKrb1cKONeivmzpNBeaDsyC8pextpyY0puvC03ruRKIdGOLinpCq2IHq2grbxH/CMlP4mnJANWx+e7YY7LmONJ4jtbmOrAT6XgSx34Ugp+C89kC1spLEx04CdS8A498f4aQZ3mdkHJ76HcRWmyFyyFF3XqleNdCz1pbatIDVfgiArqqtVB4P7b+j6uoMdmCk7D+tM/SIv2Sx2fqHx1aV91DmKMLKSJU7KNGNdQjqxOvdVohOS4Bl8chxYepehzJ0bspCDKMaKcgqjEiEoKoh4j6grCxDParxzUlvnwKOvBnOE4+oK+F/J0Ha70HrarKfY0jq1oRrW+Qz7MKOkN6iPYE+1UusE8qKbSjSII9qlO+iKcMfEoDIrMhzmUr/2Rr0hfFaGHpex9GYbpu6x1l/UhR6vMGhSpXgxzH8llORyWre21A59rqT2Q34MW3XmLN+08kETw5V/5Z0968d8j+sHIJlcWivnCzfzI4xu50fHwL6QHzsMFuIzWb8Eovp3TMI+xPIf38AE+ZvoyxcydzL1AtetIyJyF2JF5+BuRYtIM</latexit> ・問題設定 時刻 t = T の時に個体数 y が観測できたとして、 時刻 t = 0 での個体数 ✓ を推定する問題を考える <latexit sha1_base64="ZktdUSrt6i/6WS43YrRLImiPCOc=">AAANX3ictZdLb9NAEICn5dESmj7gAuISEYo4RZuUQMWpLZdWqao+01Z9yU42jYljR7abNrH6B+AK4sAJJA6In8GFP8ChR46IY5G4cGB2bLdxG2fNAVu2d2fnm52ZXe/aakPXbIexk77+K1evXR8YvJG4OZQcHhkdu1W0zQOrxNdKpm5aG6pic10z+JqjOTrfaFhcqas6X1drz0X7epNbtmYaq06rwXfqyr6hVbSS4qBoqbU3mmaZHJvM5/Opy4VshtGRBv9YNMeuP4BtKIMJJTiAOnAwwMGyDgrYeG5BFhg0ULYDLsosLGnUzuEYEsgeoBZHDQWlNbzvY23LlxpYFzZtokvYi46XhWQKxtk39omdsq/sM/vB/kTacsmG8KWFT9VjeWNv5OWdld9Sqo5PB6rnlJSooIciBzbFNx6pHVgWuanDEfWQ6JkRB21PUiY07KFBEpGjkudds/32dOXZ8rj7kH1gPzE779kJ+4L5MZq/Sh+X+PK7/249OloHIwxnJkpTxWwEuRD2DJQe0tjXKWcGzjYX5RbWyqgpykEuhcwl6bGfyyhapYx3sir655L0WEK2upItKSn3uDcbeCwylKKajGiHiHYMQg0RqoQoYwyefgVpMY5RsXWXO9K4N0P+bEq0i11HpijtZborNy3lZrpyM1Ku4BPd6IKUrtKKaNMK2snbxM9K+Xk8BemxKrYf+TmuYI7nie9tYaEHvxCDL/TgCzH4Gp7RFmoxLMz14Odi8Ca12JdGUKW5nZXybZRbKI32gsXwokm9crwrvieddRmp4AocUF5Ztjo4uP92vo/b6LEWg1Ow/OICqdN+qWKLzFeL9lXzLMbAQpw4BdsKcS3pyKrUW4NGSIyr98VxbmE2Rp+HIeIwBlEJEZUYRDVEVGMQzRDRlBAansF+ZaK2yIdNWffmDMfRd+h7IUPX+UpvY70eY0/jWAtmVOc75MKylC5TH96eaMTS9eZBPZZuEIG3T/XSd/wZE46iRJG5sIry3Qv5CvRlEdr4FL1vwQR9l3Xusi6kaZXZhRyVc37uA7l4TvjPzvrumc+N2B6I70Gd7rzDm24eCML78q/+sycJ/PcIfjBS0YViLpN9kskvPU5Pzfh/IYNwD+7DI7T+FKbw7VyENYyFwyt4DW+GvicHksPJUU+1v89nbkPoSN79C+wHwe8=</latexit> <latexit sha1_base64="nH0k4fTQVLex0pXms/x4cNj6PDY=">AAANYXictZdLb9NAEICnBUobGvrggtRLRCjiFG1SAhUSUlsurVpVfaat+pKdbBoTx45sN21i9Q8gcaUHTiBxQPwMLvwBDj1zQhyLxIUDs2O7jds4aw7Ysr07O9/szOx611brumY7jJ319N64eavvdv9A4s5g8u7Q8MhowTYPrSJfL5q6aW2qis11zeDrjubofLNucaWm6nxDrb4U7RsNbtmaaaw5zTrfrSkHhlbWioqDolXnxdr+cJplcmwyn8+nrheyGUZHGvxjyRzpewg7UAITinAINeBggINlHRSw8dyGLDCoo2wXXJRZWNKoncMJJJA9RC2OGgpKq3g/wNq2LzWwLmzaRBexFx0vC8kUjLNv7BM7Z1/ZZ/aD/Ym05ZIN4UsTn6rH8vr+0Ov7q7+lVA2fDlQuKSlRRg9FDmyKbzxSO7AsclODY+oh0TUjDtqepExo2EOdJCJHRc+7Ruv0fPX5yrj7iH1gPzE779kZ+4L5MRq/ih+X+cq7/249OloHIwxnJkpTxWwEuRD2DJQe0djXKGcGzjYX5RbWSqgpykEuhcwl6YmfyyhapYy3syr655L0REI2O5JNKSn3uDsbeCwylKKajGiFiFYMQg0RqoQoYQyefhlpMY5RsXWWO9K4t0L+bEm0Cx1HpiDtZbojNy3lZjpyM1Ju3ic60fNSukIrok0raDtvEz8r5RfwFKTHqth+7Oe4jDleIL67hcUu/GIMfr4LPx+Dr+IZbaEaw8JcF34uBm9Si31tBFWa21kp30K5hdJoL1gMLxrUK8e74nvSXpeRCq7AAeWVZauDg/tv+/u4gx5rMTgFy6+ukDrtlyq2yHy1aF81L2IMLMSJU7DNENeUjqxKvdVphMS4el8clxZmY/R5FCKOYhDlEFGOQVRCRCUG0QgRDQmh4RnsVyZqi3zYlHVvznAcfYe+FzJ0Xa70NtZrMfY0jrVgRrW/Qy6sSOkS9eHtiUYsXW8e1GLpBhF4+1Q3fcefMeEoihSZC2so37uSr0BfFqGNT9H7NkzQd1n7LutCmlaZPchROefnPpCL54T/bK/vXfhcj+2B+B7U6c7bvOnkgSC8L//KP3uSwH+P4AcjFV0o5DLZp5n88pP01Iz/F9IPY/AAHqP1ZzCFb+cSrGMsB/AG3sLp4PfkQHI4Oeqp9vb4zD0IHcmxv2egwo8=</latexit> <latexit sha1_base64="jE+fZ3CPQLhK/ZBx+Hab7JPdsWU=">AAANYXictZe9b9NAFMBfC5Q2NPSDBalLRChiQNE1JVAxtWVplarqZ9qqX7KTS2Pi2JHtpk2s/gNIrHRgAokB8Wew8A8wdGZCjEViYeDds93GbZwzA7Zs3717v3fvvTvf2Wpd12yHsbOe3hs3b/Xd7h9I3BlM3h0aHhkt2OahVeTrRVM3rU1VsbmuGXzd0Rydb9YtrtRUnW+o1ZeifaPBLVszjTWnWee7NeXA0MpaUXFQtGo9ye8Pp1kmy6ZyuVzqemEiw+hIg38smSN9D2EHSmBCEQ6hBhwMcLCsgwI2ntswAQzqKNsFF2UWljRq53ACCWQPUYujhoLSKt4PsLbtSw2sC5s20UXsRcfLQjIF4+wb+8TO2Vf2mf1gfyJtuWRD+NLEp+qxvL4/9Pr+6m8pVcOnA5VLSkqU0UORA5viG4/UDiyL3NTgmHpIdM2Ig7anKBMa9lAnichR0fOu0To9X32xMu4+Yh/YT8zOe3bGvmB+jMav4sdlvvLuv1uPjtbBCMOZidJUMRtBLoQ9A6VHNPY1ypmBs81FuYW1EmqKcpBLIXNJeuLnMopWKePtrIr+uSQ9kZDNjmRTSso97s4GHosMpagmI1ohohWDUEOEKiFKGIOnX0ZajGNUbJ3ljjTurZA/WxLtQseRKUh7menIzUi52Y7crJTL+0QnOi+lK7Qi2rSCtvM28XNSfgFPQXqsiu3Hfo7LmOMF4rtbWOzCL8bg8134fAy+ime0hWoMC/Nd+PkYvEkt9rURVGluT0j5FsotlEZ7wWJ40aBeOd4V35P2uoxUcAUOKK8sWx0c3H/b38cd9FiLwSlYfnWF1Gm/VLFF5qtF+6p5EWNgIU6cgm2GuKZ0ZFXqrU4jJMbV++K4tDAXo8+jEHEUgyiHiHIMohIiKjGIRohoSAgNz2C/MlFb5MOmrHtzhuPoO/S9kKHrcqW3sV6LsadxrAUzqv0dcmFFSpeoD29PNGLpevOgFks3iMDbp7rpO/6MCUdRpMhcWEP53pV8BfqyCG18it63YZK+y9p3WRfStMrsQZbKWT/3gVw8J/1ne33vwud6bA/E96BOd97mTScPBOF9+Vf+2ZME/nsEPxip6EIhm5l4lsktP01Pz/p/If0wBg/gMVp/DtP4di7BOsZyAG/gLZwOfk8OJIeTo55qb4/P3IPQkRz7C/v5wnM=</latexit> <latexit sha1_base64="m4Q/RACRWLpESSiBxhZMf0PwogQ=">AAANZHictZfNbtNAEICnBUoJDW2pkJCQUEQp4hRtUgIVp7ZcWqWq+pu26p/sZNO4cezIdtMmVl+AEzcEnEDigHgMLrwAh74AEuJYJC4cmB3bbdzGWXPAlu3d2flmZ2bXu7Za1zXbYeykp/fK1Wt91/tvJG4OJG8NDg3fLtjmgVXkq0VTN611VbG5rhl81dEcna/XLa7UVJ2vqdUXon2twS1bM40Vp1nn2zVlz9DKWlFxUFTYcircUXaHRlk6yyZyuVzqciGTZnSMgn8smMN9D2ELSmBCEQ6gBhwMcLCsgwI2npuQAQZ1lG2DizILSxq1cziGBLIHqMVRQ0FpFe97WNv0pQbWhU2b6CL2ouNlIZmCMfaNfWKn7Cv7zH6wP5G2XLIhfGniU/VYXt8dfHl3+beUquHTgco5JSXK6KHIgU3xjUVqB5ZFbmpwRD0kumbEQdsTlAkNe6iTROSo6HnXaL0+XX6+NOY+Yh/YT8zOe3bCvmB+jMav4sdFvvTuv1uPjtbBCMOZidJUMRtBLoQ9A6WHNPY1ypmBs81FuYW1EmqKcpBLIXNJeuznMopWKePtrIr+uSQ9lpDNjmRTSso97s4GHosMpagmI1ohohWDUEOEKiFKGIOnX0ZajGNUbJ3ljjTujZA/GxLtQseRKUh7merITUm56Y7ctJTL+0QnOi+lK7Qi2rSCtvM28TNSfg5PQXqsiu1Hfo7LmOM54rtbmO/Cz8fg8134fAy+ime0hWoMC7Nd+NkYvEkt9qURVGluZ6R8C+UWSqO9YDG8aFCvHO+K70l7XUYquAIHlFeWrQ4O7r/t7+MWeqzF4BQs718gddovVWyR+WrRvmqexRhYiBOnYJshrikdWZV6q9MIiXH1vjjOLczE6PMwRBzGIMohohyDqISISgyiESIaEkLDM9ivTNQW+bAp696c4Tj6Dn0vpOk6X+ltrNdi7Gkca8GMan+HXFiS0iXqw9sTjVi63jyoxdINIvD2qW76jj9jwlEUKTIXVlC+cyFfgb4sQhufovdNGKfvsvZd1oVRWmV2IEvlrJ/7QC6e4/6zvb5z5nM9tgfie1CnO2/zppMHgvC+/Cv/7EkC/z2CH4xUdKGQTWeepnOLT0Ynp/2/kH64Bw/gMVp/BpP4di7AKsayD6/gDbwd+J4cSI4k73iqvT0+MwKhI3n/L4CsxBo=</latexit> <latexit sha1_base64="vYfVME7TgLujBnqF5TobU2UIVI0=">AAANYXictZdLb9NAEICnBUobGvrggtRLRCjiFG1aAhUSUlsurVJVfaat+pKdbBoTx45sN21i9Q8gcaUHTiBxQPwMLvwBDj1zQhyLxIUDs2O7jds4aw7Ysr07O9/szOx611brumY7jJ319N64eavvdv9A4s5g8u7Q8MhowTYPrSJfL5q6aW2qis11zeDrjubofLNucaWm6nxDrb4U7RsNbtmaaaw5zTrfrSkHhlbWioqDolXnBdsfTrPMBJvK5XKp64VshtGRBv9YMkf6HsIOlMCEIhxCDTgY4GBZBwVsPLchCwzqKNsFF2UWljRq53ACCWQPUYujhoLSKt4PsLbtSw2sC5s20UXsRcfLQjIF4+wb+8TO2Vf2mf1gfyJtuWRD+NLEp+qxvL4/9Pr+6m8pVcOnA5VLSkqU0UORA5viG4/UDiyL3NTgmHpIdM2Ig7anKBMa9lAnichR0fOu0To9X32+Mu4+Yh/YT8zOe3bGvmB+jMav4sdlvvLuv1uPjtbBCMOZidJUMRtBLoQ9A6VHNPY1ypmBs81FuYW1EmqKcpBLIXNJeuLnMopWKePtrIr+uSQ9kZDNjmRTSso97s4GHosMpagmI1ohohWDUEOEKiFKGIOnX0ZajGNUbJ3ljjTurZA/WxLtQseRKUh7menIzUi52Y7crJTL+0QnOi+lK7Qi2rSCtvM28XNSfgFPQXqsiu3Hfo7LmOMF4rtbWOzCL8bg8134fAy+ime0hWoMC/Nd+PkYvEkt9rURVGluZ6V8C+UWSqO9YDG8aFCvHO+K70l7XUYquAIHlFeWrQ4O7r/t7+MOeqzF4BQsv7pC6rRfqtgi89WifdW8iDGwECdOwTZDXFM6sir1VqcREuPqfXFcWpiL0edRiDiKQZRDRDkGUQkRlRhEI0Q0JISGZ7Bfmagt8mFT1r05w3H0HfpeyNB1udLbWK/F2NM41oIZ1f4OubAipUvUh7cnGrF0vXlQi6UbRODtU930HX/GhKMoUmQurKF870q+An1ZhDY+Re/bMEnfZe27rAtpWmX2YILKE37uA7l4TvrP9vrehc/12B6I70Gd7rzNm04eCML78q/8sycJ/PcIfjBS0YXCRCb7NJNbfpKenvX/QvphDB7AY7T+DKbx7VyCdYzlAN7AWzgd/J4cSA4nRz3V3h6fuQehIzn2F5Q2wms=</latexit> 1 C = (xT 2 y <latexit sha1_base64="ZktdUSrt6i/6WS43YrRLImiPCOc=">AAANX3ictZdLb9NAEICn5dESmj7gAuISEYo4RZuUQMWpLZdWqao+01Z9yU42jYljR7abNrH6B+AK4sAJJA6In8GFP8ChR46IY5G4cGB2bLdxG2fNAVu2d2fnm52ZXe/aakPXbIexk77+K1evXR8YvJG4OZQcHhkdu1W0zQOrxNdKpm5aG6pic10z+JqjOTrfaFhcqas6X1drz0X7epNbtmYaq06rwXfqyr6hVbSS4qBoqbU3mmaZHJvM5/Opy4VshtGRBv9YNMeuP4BtKIMJJTiAOnAwwMGyDgrYeG5BFhg0ULYDLsosLGnUzuEYEsgeoBZHDQWlNbzvY23LlxpYFzZtokvYi46XhWQKxtk39omdsq/sM/vB/kTacsmG8KWFT9VjeWNv5OWdld9Sqo5PB6rnlJSooIciBzbFNx6pHVgWuanDEfWQ6JkRB21PUiY07KFBEpGjkudds/32dOXZ8rj7kH1gPzE779kJ+4L5MZq/Sh+X+PK7/249OloHIwxnJkpTxWwEuRD2DJQe0tjXKWcGzjYX5RbWyqgpykEuhcwl6bGfyyhapYx3sir655L0WEK2upItKSn3uDcbeCwylKKajGiHiHYMQg0RqoQoYwyefgVpMY5RsXWXO9K4N0P+bEq0i11HpijtZborNy3lZrpyM1Ku4BPd6IKUrtKKaNMK2snbxM9K+Xk8BemxKrYf+TmuYI7nie9tYaEHvxCDL/TgCzH4Gp7RFmoxLMz14Odi8Ca12JdGUKW5nZXybZRbKI32gsXwokm9crwrvieddRmp4AocUF5Ztjo4uP92vo/b6LEWg1Ow/OICqdN+qWKLzFeL9lXzLMbAQpw4BdsKcS3pyKrUW4NGSIyr98VxbmE2Rp+HIeIwBlEJEZUYRDVEVGMQzRDRlBAansF+ZaK2yIdNWffmDMfRd+h7IUPX+UpvY70eY0/jWAtmVOc75MKylC5TH96eaMTS9eZBPZZuEIG3T/XSd/wZE46iRJG5sIry3Qv5CvRlEdr4FL1vwQR9l3Xusi6kaZXZhRyVc37uA7l4TvjPzvrumc+N2B6I70Gd7rzDm24eCML78q/+sycJ/PcIfjBS0YViLpN9kskvPU5Pzfh/IYNwD+7DI7T+FKbw7VyENYyFwyt4DW+GvicHksPJUU+1v89nbkPoSN79C+wHwe8=</latexit> <latexit sha1_base64="7pH9RzX3cEpKKKaBa90/AXWNfjc=">AAANinictZdPT9RAFMAf+A+RFdCLiZdGxKiJm9nFVdSYAHqQQIjyTwnLkrbMsnW77aYtC0uzX8CTNw+eNPFgvHvVxItfwAMfwXjUxIsH37y2sIXtTj3Ypu3Mm/d7896b6Uyr1U3D9Rjb6+k9dvzEyVN9p/vPDGTODg4Nn1t27S1H50u6bdrOM011uWlYfMkzPJM/qztcrWkmf6pVH4j2pw3uuIZtLXrNOl+rqZuWUTZ01UPR+tD1B8p9pVh2VN3Ptfx8q2jysndV2Vn3F1vKDaVZdIzNinethE3rQyMsm2fjhUJBOVrIZRkdIxAej+3hk5ehCBtggw5bUAMOFnhYNkEFF89VyAGDOsrWwEeZgyWD2jm0oB/ZLdTiqKGitIr3TaythlIL68KmS7SOvZh4OUgqMMq+sffsJ/vKPrDv7E+iLZ9sCF+a+NQCltfXB19cWPgtpWr49KByQEmJMnoocuBSfKOJ2pFlkZsa7FAP/V0z4qHtccqEgT3USSJypAfeNXZf/Vy4Oz/qX2Fv2Q/Mzhu2x75gfqzGL/3dEz7/+r9bT47WwwjjmUnS1DAbUS6EPQul2zT2NcqZhbPNR7mDtQ3UFOUol0Lmk7QV5jKJ1ijj7ayG/vkkbUnIZkeyKSXlHndnI49FhhSqyYjdGLGbgtBihCYhNjCGQL+MtBjHpNg6yz1p3Csxf1Yk2ssdR2ZZ2stkR25Syk115Kak3ExIdKJnpHSFVkSXVtB23iX+kZSfxVOQAath+06Y4zLmeJb47hbmuvBzKfiZLvxMCr6KZ7KFagoL01346RS8TS3ukRHUaG7npPwuyh2UJnvBUnjRoF453tXQk/a6jFRxBY6ooCxbHTzcf9vfxyJ6bKTgVCw/P0SatF9q2CLz1aF91d6PMbKQJk7BNmNcUzqyGvVWpxES4xp8cRxYeJSiz+0YsZ2CKMeIcgqiEiMqKYhGjGhICAPPaL+yUVvkw6WsB3OG4+h79L2QpetgpXexXkuxp3GsRTOq/R3yYV5Kb1AfwZ5opdIN5kEtlW4UQbBPddP3whkTj0KnyHxYRHnpUL4ifVmELj5F76swRt9l7busDyO0ypQgT+V8mPtILp5j4bO9Xtr3uZ7aA/E9aNKdt3nTyQNBBF/+lX/2pB//PaIfDCW5sJzP5m5lC09ujkxMhX8hfXARLsFVtH4bJvDtfAxLGMtL+Aif4HNmIJPP3MncC1R7e0LmPMSOzMO/YFXQ0A==</latexit> コスト関数 y) 2 1 dC f (xT ) @C 2 = を求めてみよう C の最小化に必要な勾配 = (y xT ) d✓ f (✓) @xT 2 <latexit sha1_base64="UBvAZypX0OjvUGSxYQCWGUP8iZo=">AAANiHictZfNT9RAFMAfqIirK6AXEy8bEYMHN7OLCJqY8HGBQAjfH2FZ0pZZttJtN21ZWJr9Bzx49eBJEw/Gq1e9ePEf8MCfYDxi4sWDb15b2MJ2px5s03bmzfu9ee/NdKZVq4buuIwdd3Reunyl62r3tdT1G+mbPb19t1Yda9/W+IpmGZa9rioON3STr7i6a/D1qs2VimrwNXVvUrSv1bjt6Ja57NarfKui7Jp6SdcUF0XbvYOTmeeZQslWNC/X8PKNgsFL7mCm/uhw21tuFGx9t+w+LGLDdm8/y+bZ6PDwcOZiIZdldPRDcMxbfV33oQA7YIEG+1ABDia4WDZAAQfPTcgBgyrKtsBDmY0lndo5NCCF7D5qcdRQULqH912sbQZSE+vCpkO0hr0YeNlIZmCAfWcf2An7xj6yH+xPrC2PbAhf6vhUfZZXt3te3ln6LaUq+HShfEZJiRJ6KHLgUHwDsdqhZZGbChxSD6m2GXHR9ihlQsceqiQROdJ872pHr0+Wni0OeA/YO/YTs/OWHbOvmB+z9kt7v8AX3/x36/HRuhhhNDNxmipmI8yFsGei9IDGvkI5M3G2eSi3sbaDmqIc5lLIPJI2glzG0SplvJlV0T+PpA0JWW9J1qWk3OP2bOixyFCGajLiKEIcJSDUCKFKiB2MwdcvIS3GMS621nJXGvdGxJ8NifZqy5FZlfYy3pIbl3ITLbkJKTcTEK3oGSldphXRoRW0mXeIn5Lys3gK0mdVbD8MclzCHM8S397CXBt+LgE/04afScDv4RlvYS+Bhek2/HQC3qIW58IIqjS3c1L+COU2SuO9YAm8qFGvHO9K4ElzXUYquAKHlF+WrQ4u7r/N72MBPdYTcAqWX5wjDdovVWyR+WrTvmqdxhhaSBKnYOsRri4dWZV6q9IIiXH1vzjOLEwl6PMgQhwkIEoRopSAKEeIcgKiFiFqEkLHM9yvLNQW+XAo6/6c4Tj6Ln0vZOk6W+kdrFcS7Gkca+GMan6HPFiU0jvUh78nmol0/XlQSaQbRuDvU+303WDGRKPQKDIPllFePJevUF8WoYNP0fsmDNF3WfMu60E/rTJFyFM5H+Q+lIvnUPBsrhdPfa4m9kB8Dxp0503etPJAEP6Xf/mfPUnhv0f4g5GJL6zms7kn2eGFx/1jE8FfSDfchXswiNZHYAzfznlYwVhewSf4DF/SqTRLj6Sf+qqdHQFzGyJHeuIvqKTQfA==</latexit> ✓ <latexit sha1_base64="m4Q/RACRWLpESSiBxhZMf0PwogQ=">AAANZHictZfNbtNAEICnBUoJDW2pkJCQUEQp4hRtUgIVp7ZcWqWq+pu26p/sZNO4cezIdtMmVl+AEzcEnEDigHgMLrwAh74AEuJYJC4cmB3bbdzGWXPAlu3d2flmZ2bXu7Za1zXbYeykp/fK1Wt91/tvJG4OJG8NDg3fLtjmgVXkq0VTN611VbG5rhl81dEcna/XLa7UVJ2vqdUXon2twS1bM40Vp1nn2zVlz9DKWlFxUFTYcircUXaHRlk6yyZyuVzqciGTZnSMgn8smMN9D2ELSmBCEQ6gBhwMcLCsgwI2npuQAQZ1lG2DizILSxq1cziGBLIHqMVRQ0FpFe97WNv0pQbWhU2b6CL2ouNlIZmCMfaNfWKn7Cv7zH6wP5G2XLIhfGniU/VYXt8dfHl3+beUquHTgco5JSXK6KHIgU3xjUVqB5ZFbmpwRD0kumbEQdsTlAkNe6iTROSo6HnXaL0+XX6+NOY+Yh/YT8zOe3bCvmB+jMav4sdFvvTuv1uPjtbBCMOZidJUMRtBLoQ9A6WHNPY1ypmBs81FuYW1EmqKcpBLIXNJeuznMopWKePtrIr+uSQ9lpDNjmRTSso97s4GHosMpagmI1ohohWDUEOEKiFKGIOnX0ZajGNUbJ3ljjTujZA/GxLtQseRKUh7merITUm56Y7ctJTL+0QnOi+lK7Qi2rSCtvM28TNSfg5PQXqsiu1Hfo7LmOM54rtbmO/Cz8fg8134fAy+ime0hWoMC7Nd+NkYvEkt9qURVGluZ6R8C+UWSqO9YDG8aFCvHO+K70l7XUYquAIHlFeWrQ4O7r/t7+MWeqzF4BQs718gddovVWyR+WrRvmqexRhYiBOnYJshrikdWZV6q9MIiXH1vjjOLczE6PMwRBzGIMohohyDqISISgyiESIaEkLDM9ivTNQW+bAp696c4Tj6Dn0vpOk6X+ltrNdi7Gkca8GMan+HXFiS0iXqw9sTjVi63jyoxdINIvD2qW76jj9jwlEUKTIXVlC+cyFfgb4sQhufovdNGKfvsvZd1oVRWmV2IEvlrJ/7QC6e4/6zvb5z5nM9tgfie1CnO2/zppMHgvC+/Cv/7EkC/z2CH4xUdKGQTWeepnOLT0Ynp/2/kH64Bw/gMVp/BpP4di7AKsayD6/gDbwd+J4cSI4k73iqvT0+MwKhI3n/L4CsxBo=</latexit> t=0 <latexit sha1_base64="vYfVME7TgLujBnqF5TobU2UIVI0=">AAANYXictZdLb9NAEICnBUobGvrggtRLRCjiFG1aAhUSUlsurVJVfaat+pKdbBoTx45sN21i9Q8gcaUHTiBxQPwMLvwBDj1zQhyLxIUDs2O7jds4aw7Ysr07O9/szOx611brumY7jJ319N64eavvdv9A4s5g8u7Q8MhowTYPrSJfL5q6aW2qis11zeDrjubofLNucaWm6nxDrb4U7RsNbtmaaaw5zTrfrSkHhlbWioqDolXnBdsfTrPMBJvK5XKp64VshtGRBv9YMkf6HsIOlMCEIhxCDTgY4GBZBwVsPLchCwzqKNsFF2UWljRq53ACCWQPUYujhoLSKt4PsLbtSw2sC5s20UXsRcfLQjIF4+wb+8TO2Vf2mf1gfyJtuWRD+NLEp+qxvL4/9Pr+6m8pVcOnA5VLSkqU0UORA5viG4/UDiyL3NTgmHpIdM2Ig7anKBMa9lAnichR0fOu0To9X32+Mu4+Yh/YT8zOe3bGvmB+jMav4sdlvvLuv1uPjtbBCMOZidJUMRtBLoQ9A6VHNPY1ypmBs81FuYW1EmqKcpBLIXNJeuLnMopWKePtrIr+uSQ9kZDNjmRTSso97s4GHosMpagmI1ohohWDUEOEKiFKGIOnX0ZajGNUbJ3ljjTurZA/WxLtQseRKUh7menIzUi52Y7crJTL+0QnOi+lK7Qi2rSCtvM28XNSfgFPQXqsiu3Hfo7LmOMF4rtbWOzCL8bg8134fAy+ime0hWoMC/Nd+PkYvEkt9rURVGluZ6V8C+UWSqO9YDG8aFCvHO+K70l7XUYquAIHlFeWrQ4O7r/t7+MOeqzF4BQsv7pC6rRfqtgi89WifdW8iDGwECdOwTZDXFM6sir1VqcREuPqfXFcWpiL0edRiDiKQZRDRDkGUQkRlRhEI0Q0JISGZ7Bfmagt8mFT1r05w3H0HfpeyNB1udLbWK/F2NM41oIZ1f4OubAipUvUh7cnGrF0vXlQi6UbRODtU930HX/GhKMoUmQurKF870q+An1ZhDY+Re/bMEnfZe27rAtpWmX2YILKE37uA7l4TvrP9vrehc/12B6I70Gd7rzNm04eCML78q/8sycJ/PcIfjBS0YXCRCb7NJNbfpKenvX/QvphDB7AY7T+DKbx7VyCdYzlAN7AWzgd/J4cSA4nRz3V3h6fuQehIzn2F5Q2wms=</latexit> <latexit sha1_base64="GYyoVP1R5+t6JXOiZBsXDvuwOdQ=">AAANs3ictZfNbtNAEICn/JZCaIELEpeIUgSXaJMSqJCQoL20alXRvwBq2sh2NsTEf7LdtKnlF+AFOHACiQPiCThz4QU4cOJKxREkLhyYHdttDHHWHLBle3d2vtmZ2fWurTqG7vmMfR45dvzEyVOnR8+MnT1XOD8+ceFizbN3XI1vaLZhu49VxeOGbvENX/cN/thxuWKqBn+kduZE+6Mudz3dttb9nsO3TOWppbd0TfFR1JhYq7dcRQuaxbkQb3W/zX0lLN4rRuLWjb1GsB7eDLEUtd0M46a6o7i+rhgCPCyTdtiYmGSlCpupVqvFvwvlEqNjEuLjoX3h1DWoQxNs0GAHTOBggY9lAxTw8NyEMjBwULYFAcpcLOnUziGEMWR3UIujhoLSDt6fYm0zllpYFzY9ojXsxcDLRbIIU+wTe8u+s4/sHTtgvzJtBWRD+NLDpxqx3GmMP7+89lNKmfj0oX1ESYkWeihy4FF8U5naiWWRGxP2qIexoRnx0fYMZULHHhySiBxpkXfd/Rff1+6uTgXX2Wv2DbPzin1mHzA/VveH9maFr77879azo/UxwnRmsjRVzEaSC2HPQukujb1JObNwtgUod7HWRE1RTnIpZAFJwziXWbRKGe9nVfQvIGkoIXsDyZ6UlHs8nE08FhkqUk1G7KeI/RyEmiJUCdHEGCL9FtJiHLNiGyz3pXE/SfnzRKJdGzgyNWkvDwZyD6Tc7EBuVsotxsQgelFKt2lF9GgF7ec94uel/BKegoxYFdv34hy3MMdLxA+3sDyEX87BLw7hF3PwHTyzLXRyWFgYwi/k4G1q8f4aQZXmdlnK76PcRWm2FyyHF13qleNdiT3pr8tIBVfghIrKstXBx/23/32so8d6Dk7B8rM/SIP2SxVbZL66tK/ahzEmFvLEKdheiutJR1al3hwaITGu0RfHkYX5HH3upojdHEQrRbRyEO0U0c5BdFNEV0LoeCb7lY3aIh8eZT2aMxxH36fvhRJdRyu9h3Uzx57GsZbMqP53KIBVKd2kPqI90cqlG80DM5duEkG0Tw3T9+MZk45Co8gCWEf59h/5SvRlEXr4FL1vwjR9l/XvsgFM0iqzDRUqV+LcJ3LxnI6f/fXtQ5+d3B6I70GD7rzPm0EeCCL68m//sydj+O+R/GAUswu1Sql8u1RduTV5fzb+CxmFK3AVbqD1O3Af386HsIGxvIcv8BUOCtXCZkEtNCPVYyMxcwlSR8H8DWy84yk=</latexit> <latexit sha1_base64="y/Plp0ktl7rB/m241nYI03RnXO8=">AAANX3ictZdLb9NAEICn5dESmj7gAuISEYo4RZuUQMWpLZdWqao+01Z9yU42jYljR7abNrH6B+AK4sAJJA6In8GFP8ChR46IY5G4cGB2bLdxG2fNAVu2d2fnm52ZXe/aakPXbIexk77+K1evXR8YvJG4OZQcHhkdu1W0zQOrxNdKpm5aG6pic10z+JqjOTrfaFhcqas6X1drz0X7epNbtmYaq06rwXfqyr6hVbSS4qBoaXVvNM0yOTaZz+dTlwvZDKMjDf6xaI5dfwDbUAYTSnAAdeBggINlHRSw8dyCLDBooGwHXJRZWNKoncMxJJA9QC2OGgpKa3jfx9qWLzWwLmzaRJewFx0vC8kUjLNv7BM7ZV/ZZ/aD/Ym05ZIN4UsLn6rH8sbeyMs7K7+lVB2fDlTPKSlRQQ9FDmyKbzxSO7AsclOHI+oh0TMjDtqepExo2EODJCJHJc+7Zvvt6cqz5XH3IfvAfmJ23rMT9gXzYzR/lT4u8eV3/916dLQORhjOTJSmitkIciHsGSg9pLGvU84MnG0uyi2slVFTlINcCplL0mM/l1G0ShnvZFX0zyXpsYRsdSVbUlLucW828FhkKEU1GdEOEe0YhBoiVAlRxhg8/QrSYhyjYusud6Rxb4b82ZRoF7uOTFHay3RXblrKzXTlZqRcwSe60QUpXaUV0aYVtJO3iZ+V8vN4CtJjVWw/8nNcwRzPE9/bwkIPfiEGX+jBF2LwNTyjLdRiWJjrwc/F4E1qsS+NoEpzOyvl2yi3UBrtBYvhRZN65XhXfE866zJSwRU4oLyybHVwcP/tfB+30WMtBqdg+cUFUqf9UsUWma8W7avmWYyBhThxCrYV4lrSkVWptwaNkBhX74vj3MJsjD4PQ8RhDKISIioxiGqIqMYgmiGiKSE0PIP9ykRtkQ+bsu7NGY6j79D3Qoau85Xexno9xp7GsRbMqM53yIVlKV2mPrw90Yil682DeizdIAJvn+ql7/gzJhxFiSJzYRXluxfyFejLIrTxKXrfggn6LuvcZV1I0yqzCzkq5/zcB3LxnPCfnfXdM58bsT0Q34M63XmHN908EIT35V/9Z08S+O8R/GCkogvFXCb7JJNfepyemvH/QgbhHtyHR2j9KUzh27kIaxgLh1fwGt4MfU8OJIeTo55qf5/P3IbQkbz7Fwuxwco=</latexit> T 午後のデモでは pythonプログラムでこれを解く実験を予定 地震研 サマースクール c 伊藤伸一 1

24.

Adjoint法による勾配計算:解ける非線形方程式を例として 厳密解を代入したコスト関数 1 C = (xT 2✓ <latexit sha1_base64="7pH9RzX3cEpKKKaBa90/AXWNfjc=">AAANinictZdPT9RAFMAf+A+RFdCLiZdGxKiJm9nFVdSYAHqQQIjyTwnLkrbMsnW77aYtC0uzX8CTNw+eNPFgvHvVxItfwAMfwXjUxIsH37y2sIXtTj3Ypu3Mm/d7896b6Uyr1U3D9Rjb6+k9dvzEyVN9p/vPDGTODg4Nn1t27S1H50u6bdrOM011uWlYfMkzPJM/qztcrWkmf6pVH4j2pw3uuIZtLXrNOl+rqZuWUTZ01UPR+tD1B8p9pVh2VN3Ptfx8q2jysndV2Vn3F1vKDaVZdIzNinethE3rQyMsm2fjhUJBOVrIZRkdIxAej+3hk5ehCBtggw5bUAMOFnhYNkEFF89VyAGDOsrWwEeZgyWD2jm0oB/ZLdTiqKGitIr3TaythlIL68KmS7SOvZh4OUgqMMq+sffsJ/vKPrDv7E+iLZ9sCF+a+NQCltfXB19cWPgtpWr49KByQEmJMnoocuBSfKOJ2pFlkZsa7FAP/V0z4qHtccqEgT3USSJypAfeNXZf/Vy4Oz/qX2Fv2Q/Mzhu2x75gfqzGL/3dEz7/+r9bT47WwwjjmUnS1DAbUS6EPQul2zT2NcqZhbPNR7mDtQ3UFOUol0Lmk7QV5jKJ1ijj7ayG/vkkbUnIZkeyKSXlHndnI49FhhSqyYjdGLGbgtBihCYhNjCGQL+MtBjHpNg6yz1p3Csxf1Yk2ssdR2ZZ2stkR25Syk115Kak3ExIdKJnpHSFVkSXVtB23iX+kZSfxVOQAath+06Y4zLmeJb47hbmuvBzKfiZLvxMCr6KZ7KFagoL01346RS8TS3ukRHUaG7npPwuyh2UJnvBUnjRoF453tXQk/a6jFRxBY6ooCxbHTzcf9vfxyJ6bKTgVCw/P0SatF9q2CLz1aF91d6PMbKQJk7BNmNcUzqyGvVWpxES4xp8cRxYeJSiz+0YsZ2CKMeIcgqiEiMqKYhGjGhICAPPaL+yUVvkw6WsB3OG4+h79L2QpetgpXexXkuxp3GsRTOq/R3yYV5Kb1AfwZ5opdIN5kEtlW4UQbBPddP3whkTj0KnyHxYRHnpUL4ifVmELj5F76swRt9l7busDyO0ypQgT+V8mPtILp5j4bO9Xtr3uZ7aA/E9aNKdt3nTyQNBBF/+lX/2pB//PaIfDCW5sJzP5m5lC09ujkxMhX8hfXARLsFVtH4bJvDtfAxLGMtL+Aif4HNmIJPP3MncC1R7e0LmPMSOzMO/YFXQ0A==</latexit> y) 2 <latexit sha1_base64="8fJjJ9pSAdjt5psPDhGZ9K/iU1Y=">AAANpXictZfNbtNAEICHAqUUAi1ckLhElPIj1LBJKSAkJFqE1JKCSn8CVdNUtrtpTB07srcpqZUX4AU4cAKJA+IxuHDlwKHwBIgjSFw4MDu2aVzirDlgy97d8XyzM7PrXVtvWKYnGNs90Hfw0OH+IwNHB48dz5w4OTR8quQ5W67BlwzHctwnuuZxy7T5kjCFxZ80XK7VdYs/1jfvyuePm9z1TMdeFK0GX61rG7ZZNQ1NoGht6N797O1suepqhp9v+4V22eJVcSnbGgtkRV7x3cV22w/KK8WrZVHjQsuO5dtl19yoicsVpNaGRliuwG5OTExk/67kc4yOEQiPOWe4/zyUYR0cMGAL6sDBBoF1CzTw8FyBPDBooGwVfJS5WDPpOYc2DCK7hVocNTSUbuJ9A1srodTGtrTpEW1gLxZeLpJZGGWf2Fv2nX1g79hX9ivRlk82pC8tLPWA5Y21k8/PLPxUUnUsBdT2KCVRRQ9lDjyKbzRRO7Isc1OHZ9TDYM+MCLR9kzJhYg8NksgcGYF3zZ0X3xduzY/6F9hr9g2z84rtsveYH7v5w3jziM+//O/Wk6MVGGE8M0maOmYjyoW0Z6N0m8a+Tjmzcbb5KHextY6ash7lUsp8krbDXCbROmW8k9XRP5+kbQXZ6kq2lKTa495s5LHMUJZaKmInRuykIPQYoSuIdYwh0K8iLccxKbbucqGMeznmz7JCu9R1ZErKXia7cpNKbqorN6XkiiHRjS4q6RqtiB6toJ28R/y0kp/FU5IBq+PzZ2GOq5jjWeJ7W3jYg3+Ygi/24Isp+E08ky1sprAw04OfScE79MT7awR1mtt5Jb+DchelyV6wFF40qVeOdy30pLOtIjVcgSMqqKtWB4H7b+f7WEaPzRSchvWn+0iL9ksdn6h8dWlfdf7EGFlIE6dkWzGupRxZnXpr0AjJcQ2+OPYsTKfocztGbKcgqjGimoKoxYhaCqIZI5oKwsQz2q8c1Jb58CjrwZzhOPqCvhdydO2t9B626yn2NI6taEZ1vkM+zCvpdeoj2BPtVLrBPKin0o0iCPapXvoinDHxKAyKzIdFlFf25SvSV0XoYSl7X4Fx+i7r3GV9GKFVpgIFqhfC3EdyWY6HZWe78sfnRmoP5PegRXfe4U03DyQRfPnX/tmTQfz3iH4wssmVUiGXv56beHRt5M5U+BcyAGfhHFxC6zfgDr6dc7CEsbyDj/AZvmQuZh5kFjOlQLXvQMichtiRWfsNFODcTA==</latexit> 1 J= 2 を直接 x0 = <latexit sha1_base64="UwqABbhNrxJpQB/W3o9ugum6t8I=">AAANbHictZdbT9RAFIAPXhCRFVAfTIjJRoT4tJkFV4mJCeALBEK4X8It7TLL1u1l05aF3Wb/gH9AE58g8cH4M3zxD/jATzAmvmDiiw+eOW2hhe1OfbBN25kz5ztzzpnpTKtWdc1xGTvtuHb9xs3OW123u+/0ZO729vXfW3WsA7vIV4qWbtnrquJwXTP5iqu5Ol+v2lwxVJ2vqZXXon2txm1Hs8xlt17l24ayb2olrai4KNo52vVYM/squ+WWuavs9g2y3AgbKxQK2auFfI7RMQjBMW/1dz6BLdgDC4pwAAZwMMHFsg4KOHhuQh4YVFG2DR7KbCxp1M6hCd3IHqAWRw0FpRW872NtM5CaWBc2HaKL2IuOl41kFobYN/aJnbGv7DP7zv4k2vLIhvCljk/VZ3l1t/ftw6XfUsrApwvlC0pKlNBDkQOH4htK1A4ti9wYcEQ9dLfNiIu2xygTGvZQJYnIUdH3rtZ4d7b0cnHIG2Yn7Adm55idsi+YH7P2q/hxgS9++O/Wk6N1McJ4ZpI0VcxGmAthz0TpIY29QTkzcbZ5KLextoeaohzmUsg8kjaDXCbRKmU8yqron0fSpoSstyTrUlLucXs29FhkKEs1GdGIEY0UhBojVAmxhzH4+iWkxTgmxdZa7krj3oj5syHRXm05MqvSXiZachNSbrIlNynlZgKiFT0jpcu0Ijq0gkZ5h/gpKT+LpyB9VsX2oyDHJczxLPHtLcy14edS8DNt+JkUfAXPZAuVFBam2/DTKXiLWpwrI6jS3M5L+QbKbZQme8FSeFGjXjnelcCTaF1GKrgCh5Rflq0OLu6/0fdxCz3WUnAKlt9cInXaL1Vskflq075qnccYWkgTp2DrMa4uHVmVeqvSCIlx9b84LixMpejzMEYcpiBKMaKUgijHiHIKohYjahJCwzPcryzUFvlwKOv+nOE4+i59L+TouljpHawbKfY0jrVwRkXfIQ8WpfQe9eHviWYqXX8eGKl0wwj8faqdvhvMmHgURYrMg2WU71zKV6gvi9DBp+h9E0bpuyy6y3owSKvMDoxQeSTIfSgXz9HgGa3vnPtcTe2B+B7U6c4j3rTyQBD+l3/5nz3pxn+P8Acjm1xYHcnln+cKC88GxyeDv5AuGIDH8BStv4BxfDvnYQVjseE9HMNJz8/Mg8xA5pGveq0jYO5D7MgM/wVfI8bm</latexit> y ✓ rT erT Ke + K/✓ 1 ◆2 で微分したもの ✓ @C f (xT ) @C K/✓ dC = = rT + K/✓ @✓ d✓ f e(✓) @xT <latexit sha1_base64="qtFmOOzkElryTXnfBuBMKA87Qkk=">AAAN1nictZc/b9NAFMAvBQqEBlpYkFgsSlERIlxSAggJCcoCCkKlTf+pIZXtXhpTx7bsa9rUMhtCYmJjYAKJAfExWPgCDEh8AcRYJBYG3j3bbVzinBmwZfvu3fu9e+/d+c7WHNPwOKVfc0OHDh8ZPnrseP7ESOHkqdGx0wuevenqbF63Tdtd0lSPmYbF5rnBTbbkuExtayZb1DbuifbFDnM9w7ZqvOuwJ2113TKahq5yEK2OdupNV9X9uqO63FBN5V6wX67zFuOqEii3lbrJmnwy1K1eDRsCnzV8txZcjgXKlVJQd431Fr/UKCthYwgq26t+LVCuKN2ofXV0nBbL9GalUlH+LpSKFI9xEh0z9tjwBVIna8QmOtkkbcKIRTiUTaISD84VUiKUOCB7QnyQuVAysJ2RgOSB3QQtBhoqSDfgvg61lUhqQV3Y9JDWoRcTLhdIhUzQL/QD3aWf6Uf6nf5OteWjDeFLF55ayDJn9dTLs3O/pFQbnpy09ikp0QQPRQ48jG8iVTu2LHLTJtvYQ35gRjjYvomZMKAHByUiR3roXWfn9e7crdkJ/yJ9R39Adt7Sr/QT5Mfq/NTfP2azb/679fRoOUSYzEyapgbZiHMh7Fkg3cKxb2POLJhtPshdqK2BpijHuRQyH6VBlMs0WsOM97Ia+OejNJCQ3b5kV0rKPR7Mxh6LDClYkxE7CWInA6ElCE1CrEEMoX4TaDGOabH1l3Np3MsJf5Yl2gt9R2ZB2svdvtxdKTfdl5uWctWI6EdXpXQLV0QPV9Be3kP+vpR/CKcgQ1aD9u0ox03I8UPkB1t4NIB/lIGvDuCrGfgNONMtbGSw8GAA/yADb2OL99cIaji3S1J+B+QuSNO9oBm86GCvDO5q5ElvXUaqsALHVFiWrQ4c9t/e97EOHhsZOBXKTw+QJu6XGrTIfHVxX7X3YowtZIlTsN0E15WOrIa9OThCYlzDL459C/cz9LmVILYyEM0E0cxAtBJEKwPRSRAdCWHAGe9XNmiLfHiY9XDOMBh9jt8LRbz2V3oP6u0MexqDWjyjet8hn8xK6TXsI9wTrUy64TxoZ9KNIwj3qUH6PJoxySh0jMwnNZA3DuQr1pdF6MFT9L5CpvC7rHeX9ck4rjINUsZyOcp9LBfPqejZW2/s+exk9kB8D5p4Zz3e9PNAEOGXf+ufPcnDv0f8g6GkFxbKxdL1YuXxtfE709FfyDFyjpwnk2D9BrkDb+cMmYdYvuWGcidyI4WlwrPC88KLUHUoFzFnSOIovPoDDV/tMQ==</latexit> <latexit sha1_base64="GYyoVP1R5+t6JXOiZBsXDvuwOdQ=">AAANs3ictZfNbtNAEICn/JZCaIELEpeIUgSXaJMSqJCQoL20alXRvwBq2sh2NsTEf7LdtKnlF+AFOHACiQPiCThz4QU4cOJKxREkLhyYHdttDHHWHLBle3d2vtmZ2fWurTqG7vmMfR45dvzEyVOnR8+MnT1XOD8+ceFizbN3XI1vaLZhu49VxeOGbvENX/cN/thxuWKqBn+kduZE+6Mudz3dttb9nsO3TOWppbd0TfFR1JhYq7dcRQuaxbkQb3W/zX0lLN4rRuLWjb1GsB7eDLEUtd0M46a6o7i+rhgCPCyTdtiYmGSlCpupVqvFvwvlEqNjEuLjoX3h1DWoQxNs0GAHTOBggY9lAxTw8NyEMjBwULYFAcpcLOnUziGEMWR3UIujhoLSDt6fYm0zllpYFzY9ojXsxcDLRbIIU+wTe8u+s4/sHTtgvzJtBWRD+NLDpxqx3GmMP7+89lNKmfj0oX1ESYkWeihy4FF8U5naiWWRGxP2qIexoRnx0fYMZULHHhySiBxpkXfd/Rff1+6uTgXX2Wv2DbPzin1mHzA/VveH9maFr77879azo/UxwnRmsjRVzEaSC2HPQukujb1JObNwtgUod7HWRE1RTnIpZAFJwziXWbRKGe9nVfQvIGkoIXsDyZ6UlHs8nE08FhkqUk1G7KeI/RyEmiJUCdHEGCL9FtJiHLNiGyz3pXE/SfnzRKJdGzgyNWkvDwZyD6Tc7EBuVsotxsQgelFKt2lF9GgF7ec94uel/BKegoxYFdv34hy3MMdLxA+3sDyEX87BLw7hF3PwHTyzLXRyWFgYwi/k4G1q8f4aQZXmdlnK76PcRWm2FyyHF13qleNdiT3pr8tIBVfghIrKstXBx/23/32so8d6Dk7B8rM/SIP2SxVbZL66tK/ahzEmFvLEKdheiutJR1al3hwaITGu0RfHkYX5HH3upojdHEQrRbRyEO0U0c5BdFNEV0LoeCb7lY3aIh8eZT2aMxxH36fvhRJdRyu9h3Uzx57GsZbMqP53KIBVKd2kPqI90cqlG80DM5duEkG0Tw3T9+MZk45Co8gCWEf59h/5SvRlEXr4FL1vwjR9l/XvsgFM0iqzDRUqV+LcJ3LxnI6f/fXtQ5+d3B6I70GD7rzPm0EeCCL68m//sydj+O+R/GAUswu1Sql8u1RduTV5fzb+CxmFK3AVbqD1O3Af386HsIGxvIcv8BUOCtXCZkEtNCPVYyMxcwlSR8H8DWy84yk=</latexit> <latexit sha1_base64="ziUK2xJu/EHyGzN8/r79wbtPWm8=">AAANsXictZfNbtNAEICHv1IKgRYuSFwiSlERatikFBASEpQLKAjR/1YNCbazaUwcO7K3aVMrL8ALcOAEEgfEA/AAXHgBDhy4ghDHInHhwOzYbmOIs+aALdu7s/PNzsyud229ZZmeYOzTgYOHDh8ZOjp8bOT4iczJU6Njp5c9Z9M1+JLhWI67qmset0ybLwlTWHy15XKtqVt8RW/cle0rbe56pmMvik6LP25qG7ZZMw1NoKgyOleyULmqVXzWzd7KTk12prYr/mL3Ei/77mK3ZPGamCzVXM3wi1dKos6F1vWDtsuRIDuV75Zcc6MuLpUL2croOMsV2I2ZmZns34V8jtExDuHxyBkbugAlqIIDBmxCEzjYILBsgQYenuuQBwYtlD0GH2Uulkxq59CFEWQ3UYujhobSBt43sLYeSm2sS5se0Qb2YuHlIpmFCfaRvWG77AN7y76xX4m2fLIhfengUw9Y3qqcenZ24aeSauJTQH2fUhI19FDmwKP4JhK1I8syN03Yph5GBmZEoO0blAkTe2iRRObICLxr7zzfXbg5P+FfZK/Yd8zOS/aJvcf82O0fxus5Pv/iv1tPjlZghPHMJGnqmI0oF9KejdItGvsm5czG2eaj3MVaFTVlOcqllPkk7Ya5TKJ1yngvq6N/Pkm7CrLTl+woSbXHg9nIY5mhLNVUxE6M2ElB6DFCVxBVjCHQryEtxzEptv5yoYx7LebPmkJ7ue/ILCt7udOXu6PkZvtys0quGBL96KKSrtOK6NEK2st7xN9T8g/wlGTA6ti+Hea4hjl+QPxgCw8H8A9T8MUBfDEF38Az2UIjhYX7A/j7KXiHWry/RlCnuZ1X8jsod1Ga7AVL4UWbeuV410JPeusqUsMVOKKCsmp1ELj/9r6PJfTYTMFpWH76B2nRfqlji8pXl/ZVZy/GyEKaOCXbiXEd5cjq1FuLRkiOa/DFsW/hXoo+t2LEVgqiFiNqKYh6jKinINoxoq0gTDyj/cpBbZkPj7IezBmOoy/oeyFH1/5K72G9mWJP41iLZlTvO+TDvJKuUh/Bnmin0g3mQTOVbhRBsE8N0hfhjIlHYVBkPiyivPxHviJ9VYQePmXv6zBN32W9u6wP47TKlKFA5UKY+0gun9Phs7de3vO5ldoD+T1o0Z33eNPPA0kEX/71f/ZkBP89oh+MbHJhuZDLX8vNzF0dvz0b/oUMwzk4D5No/TrcxrfzESxhLO/gM3yBr5npzFrmSUYPVA8eCJkzEDsyjd9A8OC9</latexit> とAdjointモデルの厳密解 地震研 サマースクール ◆2 erT (xT y) 1 ✓ K/✓ rT = (y xT )e 0 が一致するか計算してみる。 erT + K/✓ c 伊藤伸一 1 ◆2

25.

Adjoint法による勾配計算:解ける非線形方程式を例として Adjointモデル { ✓ <latexit sha1_base64="Dx1T5H2n8ictLMRG6eBdQlgT/no=">AAANYHictZc/b9NAFMBf+VNKaGgLC4IlIhQxRZeUQMXUlqVVqqpN27RV/8lOLo2JY0e2mzax+gUQKzAwgcSA+BgsfAGGrmyIsUgsDLx7ttu4jXNmwJbtu3fv9+69d+c7W23qmu0wdjxw6fKVq4PXhq4nbgwnb46Mjt0q2ea+VearZVM3rXVVsbmuGXzV0RydrzctrjRUna+p9eeifa3FLVszjRWn3eTbDWXP0KpaWXFQVNxyd0fTLJNjk/l8PnWxkM0wOtLgH4vm2OAD2IIKmFCGfWgABwMcLOuggI3nJmSBQRNl2+CizMKSRu0cjiCB7D5qcdRQUFrH+x7WNn2pgXVh0ya6jL3oeFlIpmCcfWOf2An7yj6zH+xPpC2XbAhf2vhUPZY3d0de3ln+LaUa+HSgdkZJiSp6KHJgU3zjkdqBZZGbBhxSD4m+GXHQ9iRlQsMemiQROSp73rU6b0+WnxXH3YfsA/uJ2XnPjtkXzI/R+lX+uMSL7/679ehoHYwwnJkoTRWzEeRC2DNQekBj36CcGTjbXJRbWKugpigHuRQyl6RHfi6jaJUy3s2q6J9L0iMJ2e5JtqWk3OP+bOCxyFCKajKiEyI6MQg1RKgSooIxePpVpMU4RsXWW+5I494I+bMh0S71HJmStJfpnty0lJvpyc1IuYJP9KILUrpGK6JNK2g3bxM/K+Xn8RSkx6rYfujnuIo5nie+v4WFPvxCDL7Qhy/E4Ot4Rluox7Aw14efi8Gb1GJfGEGV5nZWyndQbqE02gsWw4sW9crxrviedNdlpIIrcEB5Zdnq4OD+2/0+bqHHWgxOwfKLc6RO+6WKLTJfLdpXzdMYAwtx4hRsO8S1pSOrUm9NGiExrt4Xx5mF2Rh9HoSIgxhENURUYxC1EFGLQbRCREtCaHgG+5WJ2iIfNmXdmzMcR9+h74UMXWcrvY31Row9jWMtmFHd75ALRSldoT68PdGIpevNg0Ys3SACb5/qp+/4MyYcRZkic2EF5Tvn8hXoyyK08Sl634QJ+i7r3mVdSNMqswM5Kuf83Ady8Zzwn931nVOfm7E9EN+DOt15lze9PBCE9+Vf+2dPEvjvEfxgpKILpVwm+ySTX3qcnprx/0KG4B7ch0do/SlM4du5CKsYSxVewWt4M/w9OZQcSY55qpcGfOY2hI7k3b/hM8JX</latexit> <latexit sha1_base64="BIXLSJtGTEwyMv6/b8kaw/xRtFo=">AAANqHictZfNbtNAEICHAqUUQgtckLhElCJAItoEChUSEi2XVkGoP/RPTVvZzqYxdezI3qZNrbwAL8CBE0gcEBIvwYUHgEMPcEcci8SFA7Nju7UhzpoDtmzvzs43OzO73rX1pmV6grH9Y33HT5zsPzVwevDM2dy5oeHzFxY9Z9s1+ILhWI67rGset0ybLwhTWHy56XKtoVt8Sd96JNuXWtz1TMd+KtpNvtbQNm2zZhqaQNHG8NStSs3VDL/a8auiU7GQrGobvujkH+TdisVr4noxVCnld2VDxy938hXX3KyLGzH9jeERViix8bGxsfzfhWKB0TEC4THjnO+/ChWoggMGbEMDONggsGyBBh6eq1AEBk2UrYGPMhdLJrVz6MAgstuoxVFDQ+kW3jexthpKbaxLmx7RBvZi4eUimYdR9pm9ZQfsI3vHvrFfqbZ8siF9aeNTD1je3Bh6fmn+p5Jq4FNA/YhSEjX0UObAo/hGU7UjyzI3DdilHgZ7ZkSg7XHKhIk9NEkic2QE3rX2XhzM358b9a+x1+w7ZucV22cfMD9264fxZpbPvfzv1tOjFRhhMjNpmjpmI8qFtGejdIfGvkE5s3G2+Sh3sVZFTVmOcillPkk7YS7TaJ0yHmd19M8naUdBtruSbSWp9rg3G3ksM5SnmorYSxB7GQg9QegKoooxBPo1pOU4psXWXS6Uca8k/FlRaC92HZlFZS8TXbkJJTfZlZtUcuWQ6EaXlXSdVkSPVtA47xE/peQf4ynJgNWxfTfMcQ1z/Jj43hae9OCfZODLPfhyBn4Lz3QLWxksTPfgpzPwDrV4f42gTnO7qOT3UO6iNN0LlsGLFvXK8a6FnsTrKlLDFTiigrJqdRC4/8bfxwp6bGbgNCw/+4O0aL/UsUXlq0v7qnMYY2QhS5ySbSe4tnJkdeqtSSMkxzX44jiyMJWhz50EsZOBqCWIWgainiDqGYhWgmgpCBPPaL9yUFvmw6OsB3OG4+gL+l4o0HW00ntYb2TY0zjWohkVf4d8mFPSVeoj2BPtTLrBPGhk0o0iCPapXvoinDHJKAyKzIenKF//I1+RvipCD5+y91W4Td9l8V3WhxFaZdahROVSmPtILp+3w2e8vn7oczOzB/J70KI7j3nTzQNJBF/+9X/2ZBD/PaIfjHx6YbFUKN4tjM3eGXk4Gf6FDMBluALX0fo9eIhv5wwsYCzv4RN8ga+5m7mZ3FJuJVDtOxYyFyFx5PTfnqPe1g==</latexit> d dt <latexit sha1_base64="sB3t08LmEGTqeTTvQCP16T7SmGQ=">AAANi3ictZdPT9RAFMAfqIjoCujFxMtGxJgYN7PgKiGa8CcmEAjh/5+wsGm7s2yl227asrA0+wW8efLgSRMPxg/gVePFL+CBj2A8YuLFg29eW9jCdqcebNN25s37vXnvzXSmVauG7riMHXV0Xrh4qety95Weq9dS13v7+m+sOtaerfEVzTIse11VHG7oJl9xddfg61WbKxXV4Gvq7qRoX6tx29Etc9mtV/lWRdkx9ZKuKS6KCn0P8gYqF5WCt9xIP0vnS7aiecX0ZANvB0IopFR4WC/0DbDMEBvJ5XLp84VshtExAMExb/V33YU8FMECDfagAhxMcLFsgAIOnpuQBQZVlG2BhzIbSzq1c2hAD7J7qMVRQ0HpLt53sLYZSE2sC5sO0Rr2YuBlI5mGQfadfWDH7Bv7yH6wP7G2PLIhfKnjU/VZXi30vry19FtKVfDpQvmUkhIl9FDkwKH4BmO1Q8siNxU4oB562mbERdsjlAkde6iSRORI872rHb4+XhpdHPTusXfsJ2bnLTtiXzE/Zu2X9n6BL77579bjo3Uxwmhm4jRVzEaYC2HPROk+jX2FcmbibPNQbmOtiJqiHOZSyDySNoJcxtEqZbyZVdE/j6QNCVlvSdalpNzj9mzoschQmmoy4jBCHCYg1AihSogixuDrl5AW4xgXW2u5K417I+LPhkR7teXIrEp7GW/JjUu5iZbchJSbCYhW9IyULtOK6NAK2sw7xE9J+Vk8BemzKrYfBDkuYY5niW9vYa4NP5eAn2nDzyTgd/GMt7CbwMJ0G346AW9Ri3NuBFWa21kpf4hyG6XxXrAEXtSoV453JfCkuS4jFVyBQ8ovy1YHF/ff5vcxjx7rCTgFyy/OkAbtlyq2yHy1aV+1TmIMLSSJU7D1CFeXjqxKvVVphMS4+l8cpxamEvS5HyH2ExClCFFKQJQjRDkBUYsQNQmh4xnuVxZqi3w4lHV/znAcfZe+FzJ0na70DtYrCfY0jrVwRjW/Qx4sSuki9eHviWYiXX8eVBLphhH4+1Q7fTeYMdEoNIrMg2WUb5/JV6gvi9DBp+h9E4bpu6x5l/VggFaZbRii8lCQ+1AunsPBs7m+feJzNbEH4nvQoDtv8qaVB4Lwv/zL/+xJD/57hD8Y6fjC6lAm+ziTW3g0MDYR/IV0w224A/fR+hMYw7dzHlYwllfwCT7Dl1QqNZwaTT31VTs7AuYmRI7U878KD9HN</latexit> T t 2xt K =r 1 dC = xT = dxT ◆ t y Forwardモデル <latexit sha1_base64="bnMJwvYjLtMTGOa+nSaakkrHmUY=">AAALq3icddbJcpswGAdwkm5pXLdJe+yFqTPT5BCPnanTXDqTfV+cxVmV8QgQtmIEBGSHhKFv0KfptX2Qvk0xcfOBP8rF0vfTX9iMkaS5FvdlpfJnZPTZ8xcvX429Hi+8Kb59NzH5/tR3up7OGrpjOd65Rn1mcZs1JJcWO3c9RoVmsTOts9L3sx7zfO7YJ/LeZdeCtmxucp3KuNSc+ExMj+qhEYWGjIJmKCP1m2oSi5lyOukSj7facqY5UaqU5yoLtVpNxY1quZJcJWVw1ZuT4xYxHL0rmC11i/r+VbXiyuuQepLrFouKpOszl+od2mJXcdOmgvnXYfKLIjWtIRW+fy+0aLgoqGwPzSPNheuQ225XMlvPBmRgOrb0o2KR2OxOd4SgthES6rUEDaKQ9Gdz3JB4Qo1r3/tFYnHB+xGU4HZOIi4+JYrEYCbpMX26VJ2Jh2pOEBLNsYx+SJ0qVaeip0EUO+3zo2pYNVAdqw5qYDVAGVYGamI1QVtYW6BtrG1QjpWD3mC9Ae1g7YBaWC1QgVWA2lhtUAerA+pidUFvsd6Celg9UB+rDyqxStAu1i5oD2sP9A7rHWiANQC9x3oP+oD1IfUyLGFegvAy1mXQFawroKtYV0HXsK6BrmNdB93AugG6iXUTdAvrFug21m3QHaw7oLtYd0H3sO6B7mPdBz3AegBax1oHPcR6CHqE9Qj0GOsx6AnWE9AG1gboKdZT0DOsZ6DnWM9BL7BegF5ivUy9DA/My1l4KqllSbBWzvZBknpqFeHxJpczLKmnlpM2k3nDknpqlY2PF0beuEdIver50z1kZgtytgMSpDaE/Ekyc4icpY6I1GLXoiL3AST11K1cn1tOzk5ABpL6tyXPKh5jqiRpw780ediPkrSj4TOHJxybRf3PadL24wMKC8vVBSYinu3ORMM5eecM5SpJjmf7OcG2xwa3fBo7OwgP93HajI+b+eFeqj+fe2eT94Z/azKyl+3ioM+DbG52KJj6vsX4fPrvEKr+v3E6V67Ol2uHX0qLy4OT6pjyUfmkTCtV5auyqGwqdaWh6MoP5afyS/ldmC0cFy4L5HHo6Mgg80HJXAX2F4xsOfM=</latexit> Adjointモデルの厳密解 <latexit sha1_base64="l+OgUm8QVMkFBHoOJbsgRfCJt9k=">AAANonictZfNbtNAEICn/FMIFLggcbEIRXAg2gQKCAkJyqUlFaK/tGpoZTubxsSxI3ubNrHyArwAB04gIYF4DC6cuCHgERDHInHhwOzYpnEbZ80BW7Z3Z+ebnZld79pGy7Z8wdi3kQMHDx0+cvTY8dETJ3OnTo+dObvku5ueyRdN13a9ZUP3uW05fFFYwubLLY/rTcPmT4zGA9n+pM0933KdBdFp8adNfcOxapapCxStj01eq9Q83QyqvaAqehXb3ajYSFf19UD0tLua5lVsXhNXipFeSduWLb2g3NMqnrVRF1fXx/KsUGK3JyYmtP2FYoHRkYfoeOyeOXIJKlAFF0zYhCZwcEBg2QYdfDxXoQgMWih7CgHKPCxZ1M6hB6PIbqIWRw0dpQ28b2BtNZI6WJc2faJN7MXGy0NSg3H2mb1jO+wje8++s9+ptgKyIX3p4NMIWd5aP/38/PwvJdXEp4D6LqUkauihzIFP8Y2naseWZW6asE09jA7NiEDbtykTFvbQIonMkRl61+6+2Jm/MzceXGav2Q/Mziv2jX3A/Djtn+abWT738r9bT49WYITJzKRpGpiNOBfSnoPSLRr7JuXMwdkWoNzDWhU1ZTnOpZQFJO1FuUyjDcp4P2ugfwFJewqyM5DsKEm1x8PZ2GOZIY1qKqKbILoZCCNBGAqiijGE+jWk5TimxTZYLpRxryT8WVFoLw0cmSVlL/cHcveV3ORAblLJlSNiEF1W0nVaEX1aQft5n/gpJT+DpyRD1sD27SjHNczxDPHDLTwawj/KwJeH8OUMfAPPdAuNDBamh/DTGXiXWvx9I2jQ3C4q+S7KPZSme8EyeNGmXjne9ciT/rqK1HEFjqmwrFodBO6//e9jBT22MnA6lp/tIW3aLw1sUfnq0b7q/o0xtpAlTsl2ElxHObIG9daiEZLjGn5x7FqYytDnVoLYykDUEkQtA1FPEPUMRDtBtBWEhWe8X7moLfPhU9bDOcNx9AV9LxTo2l3pfaw3M+xpHGvxjOp/hwKYU9JV6iPcE51MuuE8aGbSjSMI96lh+iKaMckoTIosgAWUr+3JV6yvitDHp+x9Fa7Td1n/LhtAnlaZNShRuRTlPpbL5/Xo2V9f++tzK7MH8nvQpjvv82aQB5IIv/zr/+zJKP57xD8YWnphqVQo3ixMzN7I35uM/kKOwQW4CFfQ+i24h2/nY1jEWN7CJ/gCX3OXcg9zs7n5UPXASMScg8SRq/wBpnbb0A==</latexit> d log dt <latexit sha1_base64="VdDMTGGXPK6t/bKJwPa+3eB632w=">AAANwXictZfNbtNAEICn/BQoBApckLhYlCI4EG0CBQRCouUCCkLQ/6puK9vZNKaObdnbtKmVF+AFOHACiQPiMTjAC3DgERDiVAQXDsyO7TaGOGsOxIp3d3a+2ZnZ9a5t+o4dCsY+Dx04eOjw8JGjx0aOnyidPDV6+sx86G0GFp+zPMcLFk0j5I7t8jlhC4cv+gE3WqbDF8yN+7J/oc2D0PbcWdHx+UrLWHfthm0ZAkVro4buoHLdWItEV7ur7bVmuzrf9nWHN8TyVd12xSoqSLFWF5p+R9MC6rtcuao3AsOKqtq2NNGNal1ND+z1prgSFytro2OsXGW3JiYmtL8rlTKj3xgkvyfe6eGLoEMdPLBgE1rAwQWBdQcMCPFahgow8FG2AhHKAqzZ1M+hCyPIbqIWRw0DpRt4X8fWciJ1sS1thkRbOIqD/wBJDcbZJ/aW7bKP7B37wn7l2orIhvSlg6UZs9xfO/X83MxPJdXCUkBzn1ISDfRQ5iCk+MZztVPLMjct2KYRRgZmRKDtW5QJG0fwSSJzZMXetXde7M7cnh6PLrHX7Ctm5xX7zN5jftz2d+vNUz798r9bz49WYITZzORpmpiNNBfSnovSLZr7FuXMxdUWoTzAVh01ZT3NpZRFJO0mucyjTcp4L2uifxFJuwqy05fsKEm1x4PZ1GOZIY1aKmInQ+wUIMwMYSqIOsYQ6zeQlvOYF1t/uVDGvZTxZ0mhPd93ZuaVo0z25SaV3FRfbkrJ1RKiH11T0k3aEUPaQXv5kPgHSv4RXpKMWRP7t5McNzDHj4gfbOHxAP5xAb42gK8V4DfwyrewUcDCwwH8wwK8Rz3hXzNo0tquKPkdlAcozfeCFfCiTaNyvBuJJ71tFWngDpxScV21Owg8f3ufRx09tgtwBtaf/UE6dF6a2KPyNaBz1duLMbVQJE7JdjJcRzmzJo3m0wzJeY3fOPYtPCgw5laG2CpANDJEowDRzBDNAkQ7Q7QVhI1Xel55qC3zEVLW4zXDcfYFvS+U6b+/04fYbhU40zi20hXV+wxFMK2k6zRGfCa6hXTjddAqpJtGEJ9Tg/RFsmKyUVgUWQSzKF/9I1+pvirCEEs5+jJco/ey3lM2gjHaZVahSvVqkvtULstrSdnbXt3z2S/sgXwfdOjOe7zp54Ek4jf/5j97MoLfHukHhpZfma+WKzfKE0+vj92bSr5CjsJ5uACX0fpNuIdP5xOYw1g+wDf4AT9L90t2yS8FseqBoYQ5C5lfKfoN20joeQ==</latexit> ✓ ◆ 2xt t =r 1 K  Z t ✓ dt r 1 t = T exp T 地震研 サマースクール d xt = f (xt ) dt x0 = ✓ <latexit sha1_base64="5T5g0O6cp/W7Ho0OiSrwHIf37q0=">AAALjnicddbLUtswFAZgQ2+UNC20y24yDQtYkHGYQtkw5X6/Qy6AGEZ25ERg2cZWgsHjPka37Wv1bWo7Kcfxcb2JpO/8cuKJJWmOyT2pqn9GRl+8fPX6zdjb8cK74vsPE5Mf657ddXVW023Tdpsa9ZjJLVaTXJqs6biMCs1kDe1uLfZGj7ket61z+eiwa0HbFje4TmU0RPybQA2XiOwwSW8mymplTl2cn58v4Ua1oiZXWRlcxzeT4yZp2XpXMEvqJvW8q6rqyOuAupLrJguLpOsxh+p3tM2uoqZFBfOug+RLh6W0BlR43qPQwuygoLKTmUcai9cBt5yuZJY+HJC+YVvSC4tFYrEH3RaCWq2AULctqB8GJJ7NdgLiilI09iMeJCYXPI6gBLdyEtHgc6JIWswgPaZPl6szUalm+wHRbLMVh0pT5epU+FxEsdOY+6ph1UB1rDpoC2sLlGFloAZWA7SNtQ3awdoB5Vg56C3WW9A7rHegJlYTVGAVoBZWC9TGaoM6WB3Qe6z3oC5WF9TD6oFKrBK0i7UL2sPaA33A+gDqY/VBH7E+gj5hfUq9DCuYVyC8inUVdA3rGug61nXQDawboJtYN0G3sG6BbmPdBt3BugO6i3UXdA/rHug+1n3QA6wHoIdYD0GPsB6BHmM9Bj3BegJ6ivUU9AzrGeg51nPQGtYaaB1rHbSBtQHaxNoEvcB6AXqJ9TL1MjwxN2fhUVPLkmDtnO2DJOOpVYRHm1xOWTKeWk7inT6nLBlPrbLRCaKVV9eH1KueP93T0Gx+znZA/NSGkD/J0BwiZ6kjIrXYtanIfQDJeOpWjsdNO2cnIANJ/duSZxXVGCWStOFfmjzsviTtMHvmcIVtsTD+nCYdLzqgsKBSXWQi5MPdmTCbkw92JqcmOT7czwl2XDa45XPt7CCc7eO0EZ0o88O9VH8h984G72V/a1LZG+7ioMf94dxsJpj6vsXofPrvEFr6f6M+V6kuVOZPvpaXVwcn1THls/JFmVaqyjdlWdlWjpWaoiuO8lP5pfwuTBQWCkuF7/3S0ZFB5pMydBW2/wL9bC4D</latexit> Adjointモデル <latexit sha1_base64="xtxQWpbQzIsxyhdenZHKkKtlsY0=">AAALyXicddbLctowFAZgp9c0lDZpl90wJYtkEQYyTZpNZ3K/3xMgF9GMbMugYNmOLcDgcTd9nD5Nl21fpsbQHMNxvUE6n34ZPFiS6pjck8Xir4knT589f/Fy8tVU5nX2zdvpmXcVz265Gitrtmm7Vyr1mMktVpZcmuzKcRkVqsmqanOj79U2cz1uW5ey67CaoHWLG1yjMirdTW8tEMOlWqCHgS5DYkZJnd4FMsx9yRGTGXKOWFQ1o5IfGsTl9Yac/xoQaTvJwXfT+WJhsbiytLSUw41SoRhfeWV4nd7NTJlEt7WWYJbUTOp5t6WiI2sBdSXXTBZmSctjDtWatM5uo6ZFBfNqQfx7w1xSAyo8ryvUcLwoqGyMzSONlVrALaclmaWNBqRv2Jb0wmyWWKyj2UJQSw8IdeuC+mFA+rPZTkBckYtq3/pFYnLB+xGU4FZKIio+JrJEZwZpM20uX5qPhqq2HxDVNvV+KDebL82Gj4ModtrngapYVVANqwaqY9VBGVYGamA1QOtY66ANrA1QjpWD3mO9B21ibYKaWE1QgVWAWlgtUBurDepgdUAfsD6AulhdUA+rByqxStAW1hZoG2sbtIO1A+pj9UG7WLugPay9xMuwhnkNwutY10E3sG6AbmLdBN3CugW6jXUbdAfrDugu1l3QPax7oPtY90EPsB6AHmI9BD3CegR6jPUY9ATrCegp1lPQM6xnoOdYz0EvsF6AXmK9BC1jLYNWsFZAq1iroFdYr0CvsV6D3mC9SbwMPeamLDzFxLIkWD1l+yBxPbGK8GiTSxkW1xPLSYPJtGFxPbHKxqeClHEDSLzq6dP1RmbzU7YD4ic2hPRJRuYQKUsdEYnFrk5F6gOI64lbOR437ZSdgAwl8W+Ln1U0xsiRuA3/0vhhDyRuh+NnDlfYFgv7n3Ok4UUHFBYUSitMhHy0Ox+O52THHssV4xwf7acEGy4b3vJx7MIwPN7HaSM6jKaH24n+cuqdDd4e/63xyPZoFwc97o/mFsaCie+bjc6n/w6huf83KouF0nJh6exTfnV9eFKdVD4oH5U5paR8VlaVXeVUKSua8kP5qfxW/mQOMg8ZP9MbDH0yMcy8V0auzPe/xt9HBA==</latexit> 2xt K ◆ d dt t <latexit sha1_base64="H0lB3rz9YK4l4/TbewLEkvCBPXw=">AAALoXicddZNT9swGAfwwN4YXTfYjtOkauUAB6oWDcZlElDeXwu0UMAIOanTmsZJSNwSiLLLPs2u26fZt1mSdjxJnyyX2v49f6eNGtuqbXBXlst/xsafPX/x8tXE68ncm/zbd1PT789cq+dorKFZhuU0Veoyg5usIbk0WNN2GBWqwc7VbjXy8z5zXG6Zdflgs2tB2ybXuUZlOHQz9YkYYXGL3vj1oPCtQEyqGmHHi/pB9WaqWC4tlJcXFxcLuFEpleOrqAyv2s30pEFaltYTzJSaQV33qlK25bVPHck1gwV50nOZTbUubbOrsGlSwdxrP/4dQSGpPhWu+yDUYHRQUNkZmUfqy9c+N+2eZKaWDkhPt0zpBvk8Mdm9ZglBzZZPqNMW1At8Es1m2T5xRCEc+x4NEoMLHkVQgpsZiXDwKZEnLaaTPtNmi5W5sFS1PJ+oltGKQoWZYmUmeCqi2GnEA1WxqqAaVg20hbUFyrAyUB2rDtrG2gbtYO2Acqwc9BbrLWgXaxfUwGqACqwC1MRqglpYLVAbqw16h/UO1MHqgLpYXVCJVYL2sPZA+1j7oPdY70E9rB7oA9YH0Eesj4mXYRXzKoTXsK6BVrFWQdexroNuYN0A3cS6CbqFdQt0G+s26A7WHdBdrLuge1j3QPex7oMeYD0APcR6CHqE9Qi0hrUGeoz1GPQE6wnoKdZT0DrWOmgDawP0DOsZ6DnWc9Am1iboBdYL0Eusl4mX4ZE5GQtPObEsCdbO2D5IPJ5YRXi4yWWUxeOJ5aTDZFZZPJ5YZeNzQkbdABKvevZ0j6nZvIztgHiJDSF7ktQcImOpIyKx2LWpyHwA8XjiVrbLDStjJyBDSfzb4mcV1ugFErfhXxo/7IHE7WD0zOEIy2RB9DlLOm54QGF+qbLMRMDT3blgNCfvrZFcOc7xdD8j2HHY8JZPtfPD8Ggfp/XwkJkd7if6S5l31nl/9LfGlf10Fwdd7qVz8yPBxPfNh+fTf4fQwv8bZwulylJp8fhLcWVteFKdUD4qn5VZpaJ8VVaUbaWmNBRN+aH8VH4pv3PF3E6uljsZlI6PDTMflNSVu/oLWOk1LA==</latexit> T = (r x f )> = r xT C c 伊藤伸一 t

26.

Adjoint法による勾配計算:解ける非線形方程式を例として <latexit sha1_base64="7s/aBs0w5v0+H3dMvVSPpP86YSc=">AAANwXictZfNbtNAEICH/1IIbeGCxMWiFMGBaJNSQCAkKBdQEIL+AarbyHY2jaljW/Y2bWrlBXgBDpxA4oB4DA7wAhx4BIQ4FcGFA7Nju40hzpoDseLdnZ1vdmZ2vWubvmOHgrHP+/YfOHjo8JGRo6PHjpdOjI1PnFwKvY3A4ouW53jBE9MIuWO7fFHYwuFP/IAbbdPhj831O7L/cYcHoe25C6Lr85W2sebaTdsyBIrq44buoHLDqEesp93UdlsLPZ1v+brDm2L5km67YhUVpFhrCE2/oWkB9V2oXNKbgWFFVW2rHoleL6r1ND2w11riYlys1McnWbnKrs3MzGh/VyplRr9JSH4PvYnD50CHBnhgwQa0gYMLAusOGBDitQwVYOCjbAUilAVYs6mfQw9Gkd1ALY4aBkrX8b6GreVE6mJb2gyJtnAUB/8BkhpMsU/sLdthH9k79oX9yrUVkQ3pSxdLM2a5Xx97fnr+p5JqYymgtUcpiSZ6KHMQUnxTudqpZZmbNmzRCKNDMyLQ9jXKhI0j+CSRObJi7zrbL3bmr89NRefZa/YVs/OKfWbvMT9u57v15hGfe/nfredHKzDCbGbyNE3MRpoLac9F6SbNfZty5uJqi1AeYKuBmrKe5lLKIpL2klzm0SZlvJ810b+IpD0F2R1IdpWk2uPhbOqxzJBGLRWxnSG2CxBmhjAVRANjiPWbSMt5zIttsFwo436a8eepQntp4MwsKUe5PZC7reRmB3KzSq6WEIPompJu0Y4Y0g7az4fE31Xy9/GSZMya2L+V5LiJOb5P/HALD4bwDwrwtSF8rQC/jle+hfUCFu4N4e8V4D3qCf+aQZPWdkXJb6M8QGm+F6yAFx0alePdSDzpb6tIA3fglIrrqt1B4Pnb/zzq6LFdgDOw/uwP0qHz0sQela8BnaveboyphSJxSrab4brKmTVpNJ9mSM5r/MaxZ+FugTE3M8RmAaKZIZoFiFaGaBUgOhmioyBsvNLzykNtmY+Qsh6vGY6zL+h9oUz/vZ0+xHa7wJnGsZWuqP5nKII5Jd2gMeIz0S2kG6+DdiHdNIL4nBqmL5IVk43CosgiWED56h/5SvVVEYZYytGXYZrey/pP2QgmaZdZhSrVq0nuU7ksp5Oyv72667Nf2AP5PujQnfd5M8gDScRv/q1/9mQUvz3SDwwtv7JULVeulGceXZ68NZt8hYzAGTgLF9D6VbiFT+dDWMRYPsA3+AE/S3dKdskvBbHq/n0Jcwoyv1L0G9AT5/E=</latexit> 0 = T exp  Z <latexit sha1_base64="c9AV6W9ub0CUaDofgdh0ZhC7qxs=">AAANtnictZc/b9NAFMAf/6EQKLAgsViUIhaia6BQgZCgLKAgBKUNoLqJbOfSmDq2ZV/Tppa/AF+AgQkkBsRXYGPhCzCwsiHYQGJh4N2z3cYQ58yALdt3797v3Xvvzne26Tt2KBj7tGv3nr379h84eGji8JHK0WOTx080Qm89sPiS5Tle8Ng0Qu7YLl8StnD4Yz/gRs90+CNz7ZZsf9TnQWh77qIY+HylZ6y6dse2DIGi1mRDd1C5bbQiFmvXte3aYsybUbAY63zT1x3eEcsXNL0TGFZUC+KoHuu2K5qoRVxbaPo1bbMViVgP7NWuWGlNTrFqjc3Nzs5qfxdmqoyOKUiP+97x/WdBhzZ4YME69ICDCwLLDhgQ4rkMM8DAR9kKRCgLsGRTO4cYJpBdRy2OGgZK1/C+irXlVOpiXdoMibawFwevAEkNptlH9oZ9Zx/YW/aF/Sq0FZEN6csAn2bCcr917Nmphz+VVA+fAro7lJLooIcyByHFN12onVmWuenBJvUwMTYjAm3PUSZs7MEnicyRlXjX33r+/eHVhenoHHvFvmJ2XrJP7D3mx+3/sF4/4Asv/rv14mgFRpjPTJGmidnIciHtuSjdoLHvUc5cnG0RygOstVFTlrNcSllE0jjNZRFtUsaHWRP9i0gaK8jBSHKgJNUej2czj2WGNKqpiK0csVWCMHOEqSDaGEOi30FajmNRbKPlQhn3k5w/TxTajZEj01D2cnMkd1PJzY/k5pVcPSVG0XUl3aUVMaQVdJgPib+t5O/iKcmENbF9M81xB3N8l/jxFu6N4e+V4Otj+HoJfg3PYgtrJSzcGcPfKcF71BL+NYImze0ZJb+F8gClxV6wEl70qVeOdyP1ZLiuIg1cgTMqKatWB4H77/D7qKPHdgnOwPLTP0iH9ksTW1S+BrSvetsxZhbKxCnZQY4bKEfWpN58GiE5rskXx46F2yX63MgRGyWITo7olCC6OaJbgujniL6CsPHM9isPtWU+Qsp6Mmc4jr6g74UqXTsrfYj1Xok9jWMtm1HD71AEC0q6TX0ke6JbSjeZB71SulkEyT41Tl+kMyYfhUWRRbCI8uYf+cr0VRGG+JS9L8NF+i4b3mUjmKJVpgk1KtfS3Gdy+byYPofrzW2f/dIeyO9Bh+58yJtRHkgi+fLv/rMnE/jvkf1gaMWFRq06c7k6++DS1I359C/kIJyGM3AerV+BG/h23ocljOUdfIav8K0yV2lWeGU1Ud29K2VOQu6o+L8BWNzklA==</latexit> 0 = Te rT exp <latexit sha1_base64="duZCQpEmOOH96Qph8pCw6TEt3jk=">AAANsHictZfNbtNAEICHAgUKgQIXJC4RpagIETaBAkJCasulVaqqlP6qIZHtbBpTx47sbdrUygvwAhw4gcQBcecFuPACHCpxBQlxBIkLB2bHdhuXOGsO2LK9Ozvf7MzsetfWm5bpCcb2jgwcPXZ88MTJU0Onz2TOnhs+f2HZc7Zcgy8ZjuW4q7rmccu0+ZIwhcVXmy7XGrrFV/TNR7J9pcVdz3TsRdFu8qcNbcM2a6ahCRRVhudLFipXtYrPOtmH2bGdir/Yudm+zsu+u9gpWbwmxko1VzP84q2SqHOhdfyg7UYkyN7Md0quuVEX18uFbGV4hOUK7P74+Hj270I+x+gYgfCYd84PXoUSVMEBA7agARxsEFi2QAMPz3XIA4Mmyp6CjzIXSya1c+jAELJbqMVRQ0PpJt43sLYeSm2sS5se0Qb2YuHlIpmFUfaJvWU/2Ef2jn1jvxNt+WRD+tLGpx6wvFk59/zSk19KqoFPAfUDSknU0EOZA4/iG03UjizL3DRgh3oY6psRgbbvUyZM7KFJEpkjI/Cutfvix5MHC6P+NfaafcfsvGJ77APmx279NN485gsv/7v15GgFRhjPTJKmjtmIciHt2SjdprFvUM5snG0+yl2sVVFTlqNcSplP0k6YyyRap4x3szr655O0oyDbPcm2klR73J+NPJYZylJNRezGiN0UhB4jdAVRxRgC/RrSchyTYustF8q412L+rCm0l3uOzLKyl8me3KSSm+rJTSm5Ykj0ootKuk4rokcraDfvET+t5GfxlGTA6ti+E+a4hjmeJb6/hbk+/FwKvtiHL6bgN/FMtrCZwsJMH34mBe9Qi/fXCOo0t/NKfhflLkqTvWApvGhRrxzvWuhJd11FargCR1RQVq0OAvff7vexhB6bKTgNy88OkRbtlzq2qHx1aV919mOMLKSJU7LtGNdWjqxOvTVphOS4Bl8cBxamU/S5HSO2UxC1GFFLQdRjRD0F0YoRLQVh4hntVw5qy3x4lPVgznAcfUHfCzm6DlZ6D+uNFHsax1o0o7rfIR8WlHSV+gj2RDuVbjAPGql0owiCfaqfvghnTDwKgyLzYRHl5UP5ivRVEXr4lL2vw236LuveZX0YoVWmDAUqF8LcR3L5vB0+u+vlfZ+bqT2Q34MW3XmXN708kETw5V//Z0+G8N8j+sHIJheWC7n83dz44zsjE1PhX8hJuAxXYAyt34MJfDvnYQljeQ+f4Qt8zRQyq5lKRgtUB46EzEWIHZlnfwC37eCG</latexit> 0 = (xT y)e 0 ✓ dt r 1 T " rT 2r K ✓ Z T 2xt K # ◆ dt xt 0 erT K/✓ + K/✓ 1 ◆2 * <latexit sha1_base64="IHoJrNU+nVQMsQveqBTQNHC+ons=">AAANZnictZc7b9RAEIAnPEI4cnmAEEg0J0IQ1WmTEIioktAkShTl/VBesp29nDmfbdm+S+6s/AFKGorQgESB+Bk0/AGK/AMQZZBoKJgd24mdnG9NgS3bu7Pzzc7Mrndt1TZ012PspOPK1WvXO2903czd6s739Pb13151rZqj8RXNMixnXVVcbugmX/F0z+DrtsOVqmrwNbXyUrSv1bnj6pa57DVsvl1V9k29pGuKh6L1LZVrSs3lu30DrDjMxkZHRwuXC0NFRscAhMe81d/5CLZgDyzQoAZV4GCCh2UDFHDx3IQhYGCjbBt8lDlY0qmdwxHkkK2hFkcNBaUVvO9jbTOUmlgXNl2iNezFwMtBsgCD7Bv7xE7ZV/aZ/WB/Um35ZEP40sCnGrDc3u19fX/pt5Sq4tOD8jklJUroociBS/ENpmpHlkVuqnBIPeTaZsRD22OUCR17sEkicqQF3tWbb0+XXiwO+o/ZB/YTs/OenbAvmB+z/kv7uMAXj/+79fRoPYwwmZk0TRWzEeVC2DNRekBjX6WcmTjbfJQ7WNtDTVGOcilkPkmPwlym0SplPM6q6J9P0iMJ2WhJNqSk3OP2bOSxyFCBajKimSCaGQg1QagSYg9jCPRLSItxTIuttdyTxr2R8GdDor3acmRWpb1MtOQmpNxkS25Sys2ERCt6RkqXaUV0aQWN8y7xU1J+Fk9BBqyK7YdhjkuY41ni21uYa8PPZeBn2vAzGfgKnukWKhksTLfhpzPwFrW4l0ZQpbk9JOWbKHdQmu4Fy+BFnXrleFdCT+J1GangChxRQVm2Oni4/8bfxy30WM/AKVh+dYE0aL9UsUXmq0P7qnUWY2QhS5yCbSS4hnRkVerNphES4xp8cZxbmMrQ50GCOMhAlBJEKQNRThDlDEQ9QdQlhI5ntF9ZqC3y4VLWgznDcfQ9+l4o0nW+0rtYr2bY0zjWohkVf4d8WJTSe9RHsCeamXSDeVDNpBtFEOxT7fS9cMYko9AoMh+WUb5zIV+RvixCF5+i900Yoe+y+C7rwwCtMjswTOXhMPeRXDxHwme8vnPms53ZA/E9aNCdx7xp5YEggi//8j97ksN/j+gHo5BeWB0uDj0rji48HRifDP9CuuABPIQnaP05jOPbOQ8r9IfxBo7hXff3fE/+bv5eoHqlI2TuQOLIF/4CvQfE8A==</latexit> ✓ @C K/✓ dC f (xT ) @C = = rT + @✓ d✓ f e(✓) @xK/✓ T <latexit sha1_base64="qtFmOOzkElryTXnfBuBMKA87Qkk=">AAAN1nictZc/b9NAFMAvBQqEBlpYkFgsSlERIlxSAggJCcoCCkKlTf+pIZXtXhpTx7bsa9rUMhtCYmJjYAKJAfExWPgCDEh8AcRYJBYG3j3bbVzinBmwZfvu3fu9e+/d+c7WHNPwOKVfc0OHDh8ZPnrseP7ESOHkqdGx0wuevenqbF63Tdtd0lSPmYbF5rnBTbbkuExtayZb1DbuifbFDnM9w7ZqvOuwJ2113TKahq5yEK2OdupNV9X9uqO63FBN5V6wX67zFuOqEii3lbrJmnwy1K1eDRsCnzV8txZcjgXKlVJQd431Fr/UKCthYwgq26t+LVCuKN2ofXV0nBbL9GalUlH+LpSKFI9xEh0z9tjwBVIna8QmOtkkbcKIRTiUTaISD84VUiKUOCB7QnyQuVAysJ2RgOSB3QQtBhoqSDfgvg61lUhqQV3Y9JDWoRcTLhdIhUzQL/QD3aWf6Uf6nf5OteWjDeFLF55ayDJn9dTLs3O/pFQbnpy09ikp0QQPRQ48jG8iVTu2LHLTJtvYQ35gRjjYvomZMKAHByUiR3roXWfn9e7crdkJ/yJ9R39Adt7Sr/QT5Mfq/NTfP2azb/679fRoOUSYzEyapgbZiHMh7Fkg3cKxb2POLJhtPshdqK2BpijHuRQyH6VBlMs0WsOM97Ia+OejNJCQ3b5kV0rKPR7Mxh6LDClYkxE7CWInA6ElCE1CrEEMoX4TaDGOabH1l3Np3MsJf5Yl2gt9R2ZB2svdvtxdKTfdl5uWctWI6EdXpXQLV0QPV9Be3kP+vpR/CKcgQ1aD9u0ox03I8UPkB1t4NIB/lIGvDuCrGfgNONMtbGSw8GAA/yADb2OL99cIaji3S1J+B+QuSNO9oBm86GCvDO5q5ElvXUaqsALHVFiWrQ4c9t/e97EOHhsZOBXKTw+QJu6XGrTIfHVxX7X3YowtZIlTsN0E15WOrIa9OThCYlzDL459C/cz9LmVILYyEM0E0cxAtBJEKwPRSRAdCWHAGe9XNmiLfHiY9XDOMBh9jt8LRbz2V3oP6u0MexqDWjyjet8hn8xK6TXsI9wTrUy64TxoZ9KNIwj3qUH6PJoxySh0jMwnNZA3DuQr1pdF6MFT9L5CpvC7rHeX9ck4rjINUsZyOcp9LBfPqejZW2/s+exk9kB8D5p4Zz3e9PNAEOGXf+ufPcnDv0f8g6GkFxbKxdL1YuXxtfE709FfyDFyjpwnk2D9BrkDb+cMmYdYvuWGcidyI4WlwrPC88KLUHUoFzFnSOIovPoDDV/tMQ==</latexit> 1 ◆2 モデルに依存した補正 地震研 サマースクール <latexit sha1_base64="XUG4gWApa4DfGbQT4mnRkI+2pbI=">AAANnHictZfNbtNAEICH8l8ItHBBQkIRpQiECJuWAuJHooVDUUpVCg2t6raynU1j6tiRvU2bWnkBXoADJypxQDwGF64gceAREEeQuHBgdmy3MY2z5oAt27uz883OzK53baNhW75g7Ou+vv0HDh46fORo/7HjuRMnBwZPlX133TP5nOnarjdv6D63LYfPCUvYfL7hcb1u2Py5sfZAtj9vcs+3XOeZaDX4Ul1fdayqZeoCRSsDdzXLEfmK0O5srgSifU+reroZlNqB19Zsd1WzeVVc4suBJ9pXStc0UeNCv1rUPGu1Ji6vDAyxwgi7NTY2lt9bKBYYHUMQHTPu4KELoEEFXDBhHerAwQGBZRt08PFchCIwaKBsCQKUeViyqJ1DG/qRXUctjho6Stfwvoq1xUjqYF3a9Ik2sRcbLw/JPAyzL+wd+8E+svfsG/udaisgG9KXFj6NkOWNlZMvzzz9paTq+BRQ26WURBU9lDnwKb7hVO3YssxNHTaph/6eGRFo+xZlwsIeGiSROTJD75pbr348vT07HFxk2+w7ZucN+8o+YH6c5k/z7RM++/q/W0+PVmCEycykaRqYjTgX0p6D0g0a+zrlzMHZFqDcw1oFNWU5zqWUBSRtR7lMow3KeCdroH8BSdsKstWVbClJtce92dhjmaE81VTEVoLYykAYCcJQEBWMIdSvIi3HMS227nKhjHsh4c+CQrvcdWTKyl7Gu3LjSm6iKzeh5EoR0Y0uKekarYg+raCdvE/8pJKfwlOSIWtg+2aU4yrmeIr43hame/DTGfhSD76UgV/DM93CWgYLj3rwjzLwLrX4e0bQoLldVPJbKPdQmu4Fy+BFk3rleNcjTzrrKlLHFTimwrJqdRC4/3a+jxp6bGXgdCy/+Iu0ab80sEXlq0f7qrsTY2whS5ySbSW4lnJkDeqtQSMkxzX84ti1MJmhz40EsZGBqCaIagailiBqGYhmgmgqCAvPeL9yUVvmw6esh3OG4+gL+l4o0LW70vtYr2fY0zjW4hnV+Q4FMKukK9RHuCc6mXTDeVDPpBtHEO5TvfRFNGOSUZgUWQDPUL78V75ifVWEPj5l74swSt9lnbtsAEO0yizDCJVHotzHcvkcjZ6d9eUdnxuZPZDfgzbdeYc33TyQRPjlX/tnT/rx3yP+wcinF8ojheKNwtiT60P3J6K/kCNwFs7DJbR+E+7j2zkDcxjLNnyET/A5dy73MFfKPQ5V+/ZFzGlIHLnyH3Lu2dc=</latexit> dt xt = <latexit sha1_base64="2FWflIEuG1FaOJYd9DlVtb+MPKU=">AAANdXictZdLb9NAEICnPEopDW1BSEgIKaIPcSFsUgIVElJbLq1SVX0/1EdkJ5vGxLEj202bWP0D/AEOnIrEAfozuPAHOPQnII5F6oUDs2O7jds4aw7Ysnd3PN/szOx611ZrumY7jJ10Xbt+42b3rZ7bvXf6Enf7BwbvrdrmnlXgKwVTN611VbG5rhl8xdEcna/XLK5UVZ2vqZW34vlanVu2ZhrLTqPGt6vKrqGVtILioCg/8GBLR+WikneXD5NvkgeifNbIDwyxVIaNZ7PZ5NVKOsXoGAL/mDcHu4dhC4pgQgH2oAocDHCwroMCNp6bkAYGNZRtg4syC2saPedwCL3I7qEWRw0FpRW872Jr05ca2BY2baIL2IuOl4VkEkbYD/aFnbLv7Jj9ZH8ibblkQ/jSwFL1WF7L979/uHQmpapYOlC+oKRECT0UObApvpFI7cCyyE0VDqiH3o4ZcdD2OGVCwx5qJBE5Knje1ZsfTpdeL464o+wT+4XZOWIn7Bvmx6j/Lnxe4Isf/7v16GgdjDCcmShNFbMR5ELYM1C6T2NfpZwZONtclFvYKqKmqAe5FDKXpId+LqNolTLeyqron0vSQwnZaEs2pKTc485s4LHIUJJaMqIZIpoxCDVEqBKiiDF4+iWkxThGxdZe7kjj3gj5syHRXm07MqvSXibbcpNSbqotNyXlcj7Rjs5J6TKtiDatoK28Tfy0lJ/FU5Aeq+LzAz/HJczxLPGdLcx14Odi8LkOfC4GX8Ez2kIlhoWZDvxMDN6kJ/aVEVRpbqelfBPlFkqjvWAxvKhTrxzviu9Ja1tGKrgCB5RXl60ODu6/re/jFnqsxeAUrL+7ROq0X6r4ROarRfuqeR5jYCFOnIJthLiGdGRV6q1GIyTG1fviuLAwHaPP/RCxH4MohYhSDKIcIsoxiHqIqEsIDc9gvzJRW+TDpqx7c4bj6Dv0vZCi62Klt7FdjbGncWwFM6r1HXJhUUoXqQ9vTzRi6XrzoBpLN4jA26c66Tv+jAlHUaDIXFhG+c6lfAX6sghtLEXvmzBG32Wtu6wLQ7TK7ECG6hk/94FclGN+2dreOfe5FtsD8T2o0523eNPOA0F4X/7lf/akF/89gh+MZHRlNZNKv0xlF14MTUz5fyE98AiewFO0/gom8O2chxXK0RF8heO+s8TjxHBi1FO91uUz9yF0JJ7/BXGOyh0=</latexit> T 勾配の厳密解 <latexit sha1_base64="GYyoVP1R5+t6JXOiZBsXDvuwOdQ=">AAANs3ictZfNbtNAEICn/JZCaIELEpeIUgSXaJMSqJCQoL20alXRvwBq2sh2NsTEf7LdtKnlF+AFOHACiQPiCThz4QU4cOJKxREkLhyYHdttDHHWHLBle3d2vtmZ2fWurTqG7vmMfR45dvzEyVOnR8+MnT1XOD8+ceFizbN3XI1vaLZhu49VxeOGbvENX/cN/thxuWKqBn+kduZE+6Mudz3dttb9nsO3TOWppbd0TfFR1JhYq7dcRQuaxbkQb3W/zX0lLN4rRuLWjb1GsB7eDLEUtd0M46a6o7i+rhgCPCyTdtiYmGSlCpupVqvFvwvlEqNjEuLjoX3h1DWoQxNs0GAHTOBggY9lAxTw8NyEMjBwULYFAcpcLOnUziGEMWR3UIujhoLSDt6fYm0zllpYFzY9ojXsxcDLRbIIU+wTe8u+s4/sHTtgvzJtBWRD+NLDpxqx3GmMP7+89lNKmfj0oX1ESYkWeihy4FF8U5naiWWRGxP2qIexoRnx0fYMZULHHhySiBxpkXfd/Rff1+6uTgXX2Wv2DbPzin1mHzA/VveH9maFr77879azo/UxwnRmsjRVzEaSC2HPQukujb1JObNwtgUod7HWRE1RTnIpZAFJwziXWbRKGe9nVfQvIGkoIXsDyZ6UlHs8nE08FhkqUk1G7KeI/RyEmiJUCdHEGCL9FtJiHLNiGyz3pXE/SfnzRKJdGzgyNWkvDwZyD6Tc7EBuVsotxsQgelFKt2lF9GgF7ec94uel/BKegoxYFdv34hy3MMdLxA+3sDyEX87BLw7hF3PwHTyzLXRyWFgYwi/k4G1q8f4aQZXmdlnK76PcRWm2FyyHF13qleNdiT3pr8tIBVfghIrKstXBx/23/32so8d6Dk7B8rM/SIP2SxVbZL66tK/ahzEmFvLEKdheiutJR1al3hwaITGu0RfHkYX5HH3upojdHEQrRbRyEO0U0c5BdFNEV0LoeCb7lY3aIh8eZT2aMxxH36fvhRJdRyu9h3Uzx57GsZbMqP53KIBVKd2kPqI90cqlG80DM5duEkG0Tw3T9+MZk45Co8gCWEf59h/5SvRlEXr4FL1vwjR9l/XvsgFM0iqzDRUqV+LcJ3LxnI6f/fXtQ5+d3B6I70GD7rzPm0EeCCL68m//sydj+O+R/GAUswu1Sql8u1RduTV5fzb+CxmFK3AVbqD1O3Af386HsIGxvIcv8BUOCtXCZkEtNCPVYyMxcwlSR8H8DWy84yk=</latexit> Z erT (xT K log ert + K/✓ r = xT y y) と一致することが確かめられた 観測とのズレ c 伊藤伸一 1

27.

Adjoint法による勾配計算:解ける非線形方程式を例として 腕だめし 問題1 <latexit sha1_base64="qq4ASKbRCnqtH0AUwK5D5aIgeuk=">AAANmXictZfNbtNAEICH8h8IFLggcYkIRUWIsAmUvxMtl0Kqiv4XNaSy3U1j4tiRvU1JrLwAL8CBAwKJA+IxEBInOHHgERDHInHhwOzYbmOIs+aALdu7s/PNzsyud229ZZmeYOzrvpH9Bw4eOnzkaObY8eyJk6OnTi97zpZr8CXDsRx3Vdc8bpk2XxKmsPhqy+VaU7f4it64J9tX2tz1TMdeFJ0Wf9zUNm2zZhqaQNH66G1e9d3FXsXiNTFeqbma4ZevVkSdC63nB22XI0HuSrFXcc3NurhULeXWR/OsUGK3JiYmcn8XigVGRx7C46Fz6tAFqMAGOGDAFjSBgw0CyxZo4OG5BkVg0ELZY/BR5mLJpHYOPcggu4VaHDU0lDbwvom1tVBqY13a9Ig2sBcLLxfJHIyxL+wt22Ef2Tv2jf1KtOWTDelLB596wPLW+slnZxd+KqkmPgXU9yglUUMPZQ48im8sUTuyLHPThKfUQ2ZoRgTavkWZMLGHFklkjozAu3b3+c7Cnfkx/yJ7zb5jdl6xr+w95sdu/zDezPH5F//denK0AiOMZyZJU8dsRLmQ9myUbtPYNylnNs42H+Uu1jZQU5ajXEqZT9JemMskWqeM97M6+ueTtKcgOwPJjpJUezycjTyWGcpRTUV0Y0Q3BaHHCF1BbGAMgX4NaTmOSbENlgtl3I9i/jxSaC8PHJllZS+TA7lJJTc1kJtScuWQGESXlXSdVkSPVtB+3iN+WsnP4CnJgNWx/WmY4xrmeIb44RZmh/CzKfjyEL6cgm/gmWyhkcLC/SH8/RS8Qy3eXyOo09wuKvkuyl2UJnvBUnjRpl453rXQk/66itRwBY6ooKxaHQTuv/3vYwU9NlNwGpaf/EFatF/q2KLy1aV91dmNMbKQJk7JdmJcRzmyOvXWohGS4xp8cexZmE7R53aM2E5B1GJELQVRjxH1FEQ7RrQVhIlntF85qC3z4VHWgznDcfQFfS8U6Npb6T2sN1PsaRxr0Yzqf4d8mFfSG9RHsCfaqXSDedBMpRtFEOxTw/RFOGPiURgUmQ+LKK/+ka9IXxWhh0/Z+xpco++y/l3WhzytMlUoUbkU5j6Sy+e18Nlfr+763ErtgfwetOjO+7wZ5IEkgi//+j97ksF/j+gHI5dcWC4VijcKE3PX83enwr+QI3AOzsM4Wr8Jd/HtfAhLGMtL+ACf4HP2XHYyO519EKiO7AuZMxA7sgu/ATja18U=</latexit> erT ✓ erT K/✓ + K/✓ 1 ◆2 <latexit sha1_base64="b1DPnFeej0eKMvjUwmgaz1pBj7I=">AAANsHictZfNbtNAEICnBQoEQgtckLhYlKL2QNgEChUSUlsurVJVpf+oaSPb3RA3jh3ZbtrUygvwAhw4gcQBcecFuPACHCpxBQlxBIkLB2bHNo3bOGsO2LK9Ozvf7MzsetfWGqbheowd9vWfOn1m4Oy585kLF7OXBocuX1l17V1H5yu6bdrOuqa63DQsvuIZnsnXGw5X65rJ17TaY9G+1uSOa9jWstdq8M26+swyKoaueigqDy2UKo6q+5XR/bK/3B5rY6nkVbmnjrWVR0rQ6CjUqIzmb1PhTnFMaftOoCekQUmIlXZ5aJjlCmxifHxcOVnI5xgdwxAeC/blgZtQgm2wQYddqAMHCzwsm6CCi+cG5IFBA2Wb4KPMwZJB7RzakEF2F7U4aqgoreH9GdY2QqmFdWHTJVrHXky8HCQVGGGf2Fv2g31k79g39jvRlk82hC8tfGoByxvlwefXln5JqTo+PageUVKigh6KHLgU30iidmRZ5KYO+9RDpmdGPLQ9QZkwsIcGSUSO9MC75sGLH0sPF0f8W+w1+47ZecUO2QfMj9X8qb95whdf/nfrydF6GGE8M0maGmYjyoWwZ6F0j8a+TjmzcLb5KHewto2aohzlUsh8krbDXCbRGmW8k9XQP5+kbQnZ6kq2pKTc495s5LHIkEI1GXEQIw5SEFqM0CTENsYQ6FeQFuOYFFt3uSeN+2nMn6cS7dWuI7Mq7WWqKzcl5aa7ctNSrhgS3eiilK7SiujSCtrJu8TPSPk5PAUZsBq274c5rmCO54jvbWG+Bz+fgi/24Isp+BqeyRZqKSzM9uBnU/A2tbgnRlCjuZ2X8gcod1Ca7AVL4UWTeuV4V0NPOusyUsUVOKKCsmx18HD/7XwfS+ixkYJTsbxzjDRpv9SwRearQ/uq/TfGyEKaOAXbinEt6chq1FuDRkiMa/DFcWRhJkWfezFiLwVRiRGVFEQ1RlRTEM0Y0ZQQBp7RfmWjtsiHS1kP5gzH0ffoeyFH19FK72K9nmJP41iLZlTnO+TDopTepj6CPdFKpRvMg3oq3SiCYJ/qpe+FMyYehU6R+bCM8q1j+Yr0ZRG6+BS9b8Bd+i7r3GV9GKZVZgsKVC6EuY/k4nk3fHbWt/763EjtgfgeNOnOO7zp5oEggi//6j97ksF/j+gHQ0kurBZy+fu58Sf3hienw7+Qc3AdbsAoWn8Ak/h2LsAKxvIePsMX+JotZNez5awaqPb3hcxViB3ZnT8ywN8u</latexit> f (xT ) rxT (1 = は始点と終点での右辺の比 f (✓) r✓(1 xT /K) ✓/K) に等しい このことを確かめてみよう。 問題2 先の例題のような1変数自励系(時間tを陽に含まない方程式)について、 観測が終点の1点のみの場合には <latexit sha1_base64="PyKu8uN2My5PhfDj6yo2lu7r4qo=">AAANpXictZfNT9RAFMAf+IXoCujFxMtGROGyGUCUmJjwERMISPhcIHxs2u4sW+m2m7YsLE3/Af8BD5408WD4M7x49eAB/QuMR0y8ePDNawtb2O7Ug23azrx5vzfvvZnOtGrV0B2XseO29kuXr1y91nG988bNzK2u7p7becfaszW+olmGZa+pisMN3eQrru4afK1qc6WiGnxV3Z0U7as1bju6ZS679Srfqig7pl7SNcVFUaH7xWbJVjSvmJ308bbplrmr+Nnn2UBc6j8oeMv+gI+loG3Az8YIavcL3b0sN8RGR0ZGshcLgzlGRy+Ex7zVc/UBbEIRLNBgDyrAwQQXywYo4OC5AYPAoIqyLfBQZmNJp3YOPnQiu4daHDUUlO7ifQdrG6HUxLqw6RCtYS8GXjaSWehjX9lHdsI+syP2g/1JtOWRDeFLHZ9qwPJqoev13aXfUqqCTxfKZ5SUKKGHIgcOxdeXqB1ZFrmpwAH10NkyIy7aHqVM6NhDlSQiR1rgXe3wzcnSs8U+7yF7z35idt6xY/YJ82PWfmkfFvji2/9uPTlaFyOMZyZJU8VsRLkQ9kyU7tPYVyhnJs42D+U21oqoKcpRLoXMI6kf5jKJVinjjayK/nkk9SVkvSlZl5Jyj1uzkcciQ1mqyYjDGHGYglBjhCohihhDoF9CWoxjUmzN5a407vWYP+sS7XzTkclLexlvyo1LuYmm3ISUmwmJZvSMlC7TiujQCtrIO8RPSflZPAUZsCq2H4Q5LmGOZ4lvbWGuBT+Xgp9pwc+k4HfxTLawm8LCdAt+OgVvUYtzYQRVmtuDUv4Q5TZKk71gKbyoUa8c70roSWNdRiq4AkdUUJatDi7uv43v4yZ6rKfgFCy/OkcatF+q2CLz1aZ91TqNMbKQJk7B1mNcXTqyKvVWpRES4xp8cZxZmErR536M2E9BlGJEKQVRjhHlFEQtRtQkhI5ntF9ZqC3y4VDWgznDcfRd+l7I0XW20jtYr6TY0zjWohnV+A55sCili9RHsCeaqXSDeVBJpRtFEOxTrfTdcMbEo9AoMg+WUb59Ll+RvixCB5+i9w0Ypu+yxl3Wg15aZbZhiMpDYe4juXgOh8/G+vapz9XUHojvQYPuvMGbZh4IIvjyL/+zJ5347xH9YGSTC/mh3OCT3MjC496xifAvpAPuwX3oR+tPYQzfznlYwViO4At8g++ZR5mXmeVMPlBtbwuZOxA7MoW/BUDc0w==</latexit> dC f (xT ) dC = d✓ f (✓) dxT ← 勾配が始点と終点の情報のみで決まる が常に成立する。なぜか考えてみよう。 地震研 サマースクール c 伊藤伸一