5.1K Views
June 20, 23
スライド概要
第10回6月22日 テンソルネットワークを用いた大規模計算
テンソルネットワーク形式による計算問題の記述法と、それを効率的に計算機で計算するための技術について紹介する。
R-CCS 計算科学研究推進室
ςʫ ࠷খαΠζ Computational Science Alliance T h e Un ive r s i t y of To k yo 15mm ςϯιϧωοτϫʔΫΛ༻͍ͨେنࢉܭ ౦ژେֶେֶӃཧֶڀݚܥՊɹେٱอؽ
ߨࢣͷഎܠ େٱอɹؽʢOKUBO Tsuyoshi) ౦ژେֶཧֶڀݚܥՊ ྔࢠιϑτΣΞ࠲ߨد ಛ।ڭत ڀݚɿ ౷ܭཧɺੑཧɺ࣓ੑɺࢉܭཧ • • • ߶ମԁ൫ͷϥϯμϜύοΩϯά ֊ࣾձܗͷฏۉղੳɾγϛϡϨʔγϣϯ ʢݹయʣϑϥετϨʔτ࣓ੑମͷ৽نடং • • • Monte Carlo multiple-Q ঢ়ଶ, Z2-vortex,… ด͡ࠐΊྔࢠྟքݱ ςϯιϧωοτϫʔΫ • ʢྔࢠʣεϐϯܥɺςϯιϧ܁ΓࠐΈ • ྔࢠଟମܥͷͨΊͷྔࢠΞϧΰϦζϜ • …. ʮژʯ ʮַʯʁ
ࠓͷͷྲྀΕ • ͡Ίʹ • • • • ςϯιϧͱςϯιϧωοτϫʔΫ ςϯιϧωοτϫʔΫࢉܭͷૅج • جຊతͳԋࢉ • ۙࣅతͳςϯιϧωοτϫʔΫॖɿςϯιϧ܁ΓࠐΈ܈ • ม๏ʹΑΔݻ༗ͷԠ༻ ςϯιϧωοτϫʔΫࢉܭͷେنԽ • ςϯιϧωοτϫʔΫࢉܭͷ࣮ɾಛ • ΞϧΰϦζϜʹಛԽͨ͠ฒྻԽɿHOTRG • ൚༻తͳϥΠϒϥϦΛͬͨฒྻԽɿTeNeS ·ͱΊ
͡ΊʹɿςϯιϧͱςϯιϧωοτϫʔΫ
ςϯιϧʁ • ϕΫτϧ ɿ 1࣍ݩతͳࣈͷฒͼ • ߦྻ ɿ ɹ2࣍ݩతͳࣈͷฒͼ ҰൠԽ • (n֊ͷʣςϯιϧ ɿ ɹn࣍ݩతͳࣈͷฒͼ ʲجຊతͳԋࢉʹॖʳ ߦྻੵɿ ॖɿ ""͕ଟ͘ͳΔͱ ද͕هෳࡶ...
μΠΞάϥϜΛ༻͍ͨςϯιϧදه • ϕΫτϧ ɿ • ߦྻ ɿ • ςϯιϧ ɿ ςϯιϧͷੵʢॖʣͷදݱ ˎn֊ͷςϯιϧʹnຊͷ C ʹ B A C D ʹ B A
ॖͷྔࢉܭ 3ຊ ߦྻੵɿ A, B = C ʹ B A ͷ=ྔࢉܭ ςϯιϧॖɿ A= B= 4ຊ C ʹ A ͷ=ྔࢉܭ μΠΞάϥϜͱͷରԠ • • ॖͷྔࢉܭμΠΞάϥϜͷͷͰ͔Δ ʢϝϞϦ༻ྔ͔Δʣ 4ຊ B
ॖͷॱࢉܭͱྔࢉܭ ςϯιϧॖɿ A= B= C= C D ʹ B A Case 1: ͷ=ྔࢉܭ Case 2: ͷ=ྔࢉܭ ॖͷධՁॱͰ͕ྔࢉܭมΘΔʂ C B A AB C A B AC ˎ࠷దॱংͷܾఆNPࠔɻ࣮༻తͳΞϧΰϦζϜྫ R.N.C. Pfeifer, et al., Phys. Rev. E 90, 033315 (2014).
ςϯιϧωοτϫʔΫ ɿςϯιϧͷॖͰߏ͞ΕͨωοτϫʔΫ ςϯιϧωοτϫʔΫʢTNʣ ʲʢͬ͘͟Γͨ͠ʣྨʳ • • Openͳɿ͋Γ or ͳ͠ • Openͳ͕͋ΓɿTN͕ࣗେ͖ͳςϯιϧ • Openͳ͕ͳ͠ɿTNࣈ ωοτϫʔΫߏɿنଇత or ෆنଇ • • ωοτϫʔΫߏʹԠͯ͡มΘΔ • ྫɿεϐϯܕͷؔنଇత • ྫɿࢠͷଟମిࢠঢ়ଶෆنଇ ωοτϫʔΫαΠζɿ༗ ݶor ແݶ • جຊతʹ༗͕ͩݶɺ߹ʹΑͬͯແܥݶ औΓѻ͑Δ
ςϯιϧωοτϫʔΫͷྫ1ɿ౷ܭཧֶ ݹయΠδϯάܕʢ࣓ੑମͷϞσϧʣ ԹT Ͱͷ֬ɿϘϧπϚϯ ঢ়ଶɿ ٯԹɿ ྗֶࣗ༝ΤωϧΪʔ ؔɿ (2Nͷ) • Openͳ"ͳ͠" ʲؔͷςϯιϧωοτϫʔΫදࣔʳ• نଇత • A A ༗ݶʙແݶ A A A A A A A A
ςϯιϧωοτϫʔΫͷྫ2ɿྔࢠճ࿏
ྔࢠճ࿏ɿ
googleͷ"ྔࢠӽ" ճ࿏
F. Arute, et al., Nature 574, 505 (2019)
ྔࢠϏοτʹԋࢉ͢Δήʔτૢ࡞ͷճ࿏ਤ
Article
developed fast, high-fidelity gates that can be executed simultaneously
across a two-dimensional qubit array. We calibrated and benchmarked
the processor at both the component and system level using a powerful
new tool: cross-entropy benchmarking11. Finally, we used componentlevel fidelities to accurately predict the performance of the whole system, further showing that quantum information behaves as expected
when scaling to large systems.
2࣍ݩͷϕΫτϧɻ
దͳجఈͷͰݩɺϢχλϦ
దͳجఈɺʢ | 0⟩, | 1⟩ʣͰ
ߦྻʢor "ςϯιϧ"ʣ
a
A suitable computational task
ද͢ݱΔͱ2࣍ݩͷෳૉϕΫτϧ
To demonstrate quantum supremacy, we compare our quantum processor against state-of-the-art classical computers in the task of sampling
the output of a pseudo-random quantum circuit11,13,14. Random circuits
are a suitable choice for benchmarking because they do not possess
structure and therefore allow for limited guarantees of computational
hardness10–12. We design the circuits to entangle
b a set of quantum bits
Single-qubit
gate: logi(qubits) by repeated application of single-qubit and
two-qubit
25 ns
cal operations. Sampling the quantum circuit’s output produces a set
of bitstrings, for example {0000101, 1011100, …}.
Owing to quantum
Qubit
XYbitstrings
control
interference, the probability distribution of the
resembles
a speckled intensity pattern produced by light interference in laser
Two-qubit gate:
scatter, such that some bitstrings are much more likely
to occur than
12 ns
others. Classically computing this probability distribution
becomes
Qubit 1
Z control
exponentially more difficult as the number of qubits
(width) and number
of gate cycles (depth) grow.
Coupler
We verify that the quantum processor is working properly using a
2 compares how
benchmarking11,12,14,Qubit
which
A
B
CmethodDcalled cross-entropy
Z control
often each bitstring is observed experimentally with its corresponding
m
5
6
7
8
ideal probability computed via simulation on a classical computer. For
a given
circuit,into
we four
collect
the measured
bitstrings
i} and compute the
couplers
are divided
subsets
(ABCD), each
of which is{x
executed
11,13,14
•
linear
cross-entropy
benchmarking
fidelity
(see
also
Supplementary
simultaneously across the entire array corresponding to shaded colours.
Here
Information),
which
is
the
mean
of
the
simulated
probabilities
of the
we show an intractable sequence (repeat ABCDCDAB); we also use different
bitstrings
we
measured:
coupler subsets along with a simplifiable sequence (repeat EFGHEFGH, not
googleͷ"ྔࢠӽ"
ճ࿏ F. Arute, et al., Nature 574, 505 (2019)
Article
a
0
0
C
A
0
B
D
0
0
Row
Column
W
X
X
W
Y
Time
Cycle 1
A
B
2
D
C
3
4
Fig. 3 | Control operations for the quantum supremacy circuits. a, Example
quantum circuit instance used in our experiment. Every cycle includes a layer
each of single- and two-qubit gates. The single-qubit gates are chosen randomly
from { X , Y , W }, where W = (X + Y )/ 2 and gates do not repeat sequentially.
The sequence of two-qubit gates is chosen according to a tiling pattern,
coupling each qubit sequentially to its four nearest-neighbour qubits. The
single-qubit gates chosen randomly from
on all qubits,
followed by two-qubit gates on pairs of qubits. The sequences of gates
which form the ‘supremacy circuits’ are designed to minimize the circuit
depth required to create a highly entangled state, which is needed for
Adjustable coupler
b
Openͳ"͋Γ"
ྔࢠճ࿏=ςϯιϧωοτϫʔΫ
"ͳ͠"͋Δ
•
shown) that can be simulated on a classical computer. b, Waveform of control
FXEB = 2n"P(xi)#i − 1
signals for single- and two-qubit gates.
(1)
ෆنଇ
where nthese
is thecircuits
number
qubits,
P(x )processor
is the probability
ofthan
bitstring
of running
onofthe
quantum
is greater
at x
computed
for
the
ideal
quantum
circuit,
and
the
average
is
over
least 0.1%. We expect that the full
data for Fig. 4b should have similar the
• ༗ݶ
observed
bitstrings.
Intuitively,
is correlated
withtoo
how
often
F (red
fidelities, but since the simulation times
numbers) take
long
to we
ྔࢠίϯϐϡʔλͷݹయγϛϡϨʔγϣϯ
{ X, Y, W}
ʹςϯιϧωοτϫʔΫͷॖ
Qubit
•
i
XEB
i
sample
high-probability
bitstrings.
When
there aresection).
no errors
in the
check,
we have
archived the data
(see ‘Data
availability’
The
10 mm
Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular
array of 54 qubits (grey), each connected to its four nearest neighbours with
couplers (blue). The inoperable qubit is outlined. b, Photograph of the
Sycamore chip.
ςϯιϧωοτϫʔΫʹΑΔྔࢠճ࿏γϛϡϨʔγϣϯ ྔࢠճ࿏ͷγϛϡϨʔγϣϯ=ςϯιϧωοτϫʔΫͷॖ ݹయίϯϐϡʔλͰͷࢉܭɿ ࣮ࡍͷճ࿏ͷ࣮ߦॱংʹΑΒͣɺ࠷దͳॱ൪Ͱςϯιϧͷॖ ࢉܭΛߦ͏͜ͱͰɺࢉܭίετɺϝϞϦίετ͕Լ ࠷ઌͷࢉܭɿ Y. A. Liu, et al., Gordon bell Prize in SC21 (2021), Google͕ྔࢠӽΛओுͨ͠ϥϯμϜྔࢠճ࿏ͷݹయαϯϓϦϯά 10,000 ʢ࠷ॳͷੵݟΓʣ 304ඵʂ ʢcf. ྔࢠίϯϐϡʔλ=200ඵʣ
ςϯιϧωοτϫʔΫͷྫ3ɿྔࢠଟମঢ়ଶ ྔࢠଟମঢ়ଶɿ جఈ ྔࢠεϐϯɾbitɿ ྔࢠԽֶɿ i = يࢠݪಓɾࢠيಓͷ༗ ςϯιϧ ྔࢠଟମঢ়ଶ (a) (b) ςϯιϧωοτϫʔΫղ (c) PEPS (for 2d system) <latexit sha1_base64="XkC8uXv0uT1Qilx+79HHlBouX2k=">AAACZ3icjVG7SgNBFD1ZXzE+EhVEsFFDxCrMiqBYBW0s4yMPSELYXSfJkH2xuwnE4A9Y2EawUhARP8PGH7DwE8RSwcbCu5sFsYh6h5l758w9956ZUW1duB5jzxFpaHhkdCw6HpuYnJqOJ2Zm867VcjSe0yzdcoqq4nJdmDznCU/nRdvhiqHqvKA2d/3zQps7rrDMI69j84qh1E1RE5ri+VA564pqIimnWWBLg4MkQstaiVuUcQwLGlowwGHCo1iHApdGCTIYbMIq6BLmUCSCc45TxIjboixOGQqhTVrrtCuFqEl7v6YbsDXqotN0iLmEFHtid+yNPbJ79sI+B9bqBjV8LR3yap/L7Wr8bOHw40+WQd5D45v1q2YPNWwFWgVptwPEv4XW57dPem+H2wep7iq7Zq+k/4o9swe6gdl+1272+cElYv/7gPx6WmZpeX8jmdkJvyKKRaxgjd57ExnsIYsc9W3gHD1cRF6kuDQvLfRTpUjImcMPk5a/AI6fiyk=</latexit> ྔࢠ૬ؔͷ খ͍͞ςϯιϧʹղ ಛΛར༻ͨۙ͠ࣅ ~eNͷಠཱཁૉ ~O(N)ͷಠཱཁૉ ྔࢠଟମܥͷΤωϧΪʔঢ়ଶɿ • Ұൠͷঢ়ଶʢϥϯμϜϕΫτϧʣʹൺͯɺগͳ͍ྔࢠ૬ؔ • c.f. ΤϯλϯάϧϝϯτΤϯτϩϐʔͷ໘ੵଇ ςϯιϧωοτϫʔΫʹΑΔߴਫ਼ͷۙࣅ • Openͳ"͋Γ" نଇɾෆنଇ • ༗ݶɾແݶ •
ςϯιϧωοτϫʔΫʹΑΔۙࣅγϛϡϨʔγϣϯ ྔࢠճ࿏ͷۙࣅγϛϡϨʔγϣϯ ݹయίϯϐϡʔλͰͷࢉܭɿ ྔࢠճ࿏ʹैͬͯҠΓมΘΔྔࢠঢ়ଶΛςϯιϧωοτϫʔ ΫͰۙࣅతʹද͢ݱΔ • ॳظখ͍͞ςϯιϧͰදݱՄೳ • • ඇৗʹଟ͘ͷqubitΛݹయίϯϐϡʔλͰऔΓѻ͑Δ ճ࿏͕ਂ͘ͳΔͱɺҰൠʹςϯιϧ͕େ͖͘ͳΔ • • ࢉܭΛਐΊΔʹʢςϯιϧΛখ͘͞อͭʣۙࣅ͕ඞཁ ਂ͘ͳΕͳΔ΄Ͳɺۙࣅਫ਼͕Լ
10 TABLE 2 a f2 (x) with error bound setting to 10 3 . For the 10th-order tensor, all 9 k r̄ as well as the number of total parameters Np are compared. 9 4 5 5 7 9 ςϯιϧωοτϫʔΫͷྫ4ɿςϯιϧܕσʔλ 1 2 3 4 Np 5 6 7 1512 1944 2084 2144 2732 2328 3088 ҙͷςϯιϧܕσʔλ 1512 1944 2064 2144 4804 4224 9424 1360 1828 1384 1360 2064 1324 1360 1788 1384 1360 1544 1348 1360 1556 1348 1360 1864 1384 1360 2832 1384 8 9 10376 7728 1360 1600 1272 3312 2080 1360 1324 1324 ɿྔࢠଟମঢ়ଶͱಉ༷ʹͯ͠ղՄೳ ςϯιϧωοτϫʔΫղ ςϯιϧܕσʔλ ce, sive results that are similar to that in noise free cases. TRpt ALSAR slightly overestimates the TR-ranks. It should be As noted that TR-BALS can estimate the true rank correctly m- and obtain the best compression ratio as TR-ALS given ใͷ૬ؔߏͷ In true rank. In addition, TR-BALS is more computationally ral efficient than TR-ALSAR. In summary, TT-SVD and TRಛΛར༻ͨۙ͠ࣅ are SVD have limitations for representing the tensor data with be symmetric ranks, and this problem becomes more severe TR when noise is considered. The ALS algorithm can avoid this ral problem due to the flexibility on distribution of ranks. More (Q. Zhao, et al arXiv:1606.05535) ata detailed results can be found in Table 3. s aCOIL-100 dataset = 32 x 32 x 3 x 7200 ςϯιϧ her 6.2 COIL-100 dataset ors We are 10. mal der ng ks. ed go3, en • Openͳ"͋Γ" • نଇɾෆنଇ • ༗ݶ T ྫ1ɿը૾σʔληοτ ϐΫηϧ ৭ ը૾ M1 M2 r ςϯιϧϦϯάղ M4 M3 ྫ̎ɿχϡʔϥϧωοτϫʔΫͷॏΈߦྻ (Z.-F. Gao et al, Phys. Rev. Research 2, 023300 (2020).) xi: input neuron (pixel) yi: output neuron matrix x and y Wij: weightZE-FENG GAO etconnecting al. since t grows out th of the ment e the sys The ap quantu [40,41 In t neural
ςϯιϧωοτϫʔΫࢉܭͷૅج
ςϯιϧωοτϫʔΫͷࢉܭ ςϯιϧωοτϫʔΫΛ༻͍ͨԠ༻ͷجຊࢉܭཁૉ • • • ςϯιϧͷॖ • جຊతʹɺ2ͭͣͭॖࢉܭΛ͢Δ • ςϯιϧΛߦྻʹม͠ܗɺBLASͳͲΛ༻͍Δ ςϯιϧͷϥϯΫۙࣅ • ಛҟղʹΑΔϥϯΫۙࣅͷ֦ு • ۙࣅతͳॖΛߦ͏తͳͲʹ༻͍ΒΕΔ • ଟ͘ͷ߹ɺςϯιϧΛߦྻʹม͠ܗɺߦྻͷಛҟղΛ༻͍Δ ςϯιϧͷઢܗ • ςϯιϧ͔Βߏ͞ΕΔߦྻͷʢҰൠԽʣݻ༗ • ྔࢠଟମɺςϯιϧղͳͲͷ"࠷దԽ"Ͱ༻ ςϯιϧͷجຊԋࢉɺʢݱঢ়ʣߦྻʹมߦͯ͠ܗΘΕΔ cf. TBLIS ςϯιϧ͚ͷBLASʢBLIS= BLAS-like Library Instantiation Software) https://github.com/devinamatthews/tblis
ςϯιϧͷߦྻͷมܗ ςϯιϧͷΛ·ͱΊͯߦྻͱΈͳ͢ l μΠΞάϥϜ j l j k i i i j l k k (0,0) → 0 (0,1) → 1 i, l = 0, 1ͷͱ͖ (1,0) → 2 (1,1) → 3 ςϯιϧ ܗঢ় • ςϯιϧ༻ͷϥΠϒϥϦͰ؆୯ʹߦ͑Δɻʢྫɿnumpy.reshape) • ߦྻͷมܗҰൠʹɺҰҙͰͳ͍ • Ͳͷ༷ʹߦྻԽ͢Δ͔ɺతʹ߹ΘͤΔ
ςϯιϧωοτϫʔΫͷॖ ςϯιϧωοτϫʔΫॖͷྔࢉܭ ϧʔϓͷͳ͍πϦʔܕͷߏҎ֎Ͱɺ ྔࢉܭςϯιϧʹؔͯ͠ɺࢦؔతʹ૿େ͢Δ L×Lͷsquare lattice ͞Nͷchain ॴہςϯιϧɿ ॴہςϯιϧɿ ͔Βॱʹॖɿ ͔Βॱʹॖɿ େنͳςϯιϧωοτϫʔΫॖۙࣅతʹධՁ 2d نଇTNʹର͢Δ൚༻తΞϓϩʔνɿ • • • ςϯιϧ܁ΓࠐΈ ߦྻੵঢ়ଶ๏ ֯సૹ܁ΓࠐΈ܈ ˎෆنଇͰಉछͷۙࣅՄೳ
ςϯιϧωοτϫʔΫࢉܭͷૅجɿۙࣅॖ
ςϯιϧωοτϫʔΫ܁ΓࠐΈ܈ • M. Levin and C. P. Nave, PRL (2007)ʹΑΔ Tensor network Renormalization Group (TRG)͔Β࢝·ͬͨൺֱత৽͍͠ྲྀΕ • ςϯιϧωοτϫʔΫΛૈࢹԽ͍ͯ͘͜͠ͱͰɺۙࣅతʹॖ Λ͢ࢉܭΔ • • ૈࢹԽ⟷࣮ۭؒ܁ΓࠐΈ܈ छʑͷʢنଇ֨ࢠʣTNʹద༻Մೳ • ؔͷʹࢉܭద༻͢Δ͜ͱͰɺੑɺૉཻࢠɺࢠݪ ֩ͷཧʹڀݚԠ༻͞Ε͍ͯΔ
TRGͰΓ͍ͨ͜ͱ ܁ΓࠐΈ ʢ͞εέʔϧ͕√̎ഒʣ : : ʢۙࣅʣ L×L ͷਖ਼ํ֨ࢠ (L×L)/2 ͷਖ਼ํ֨ࢠ ςϯιϧͷେ͖͞Λม͑ͣʹ ςϯιϧͷΛݮΒ͢
TRGͷ४උɿಛҟղ ಛҟղ ҙͷߦྻN×MߦྻAҎԼͷʹܗҰҙʹղͰ͖Δ A = ඇෛͷ࣮ɻ rank(A) = ඇθϩͷಛҟͷ ͱฒΔͱศར ର͕֯λͷ ର֯ߦྻ ҰൠԽϢχλϦߦྻ Aͷ࠷దͳRϥϯΫۙࣅɿ ಛҟΛେ͖͍ํ͔ΒR͚ͩ͠ݸɺ ΓΛθϩͰஔ͖͑Δ
TRGͷ४උɿಛҟղʹΑΔۙࣅ Aͷ࠷దͳRϥϯΫۙࣅɿ ಛҟΛେ͖͍ํ͔ΒR͚ͩ͠ݸɺ ΓΛθϩͰஔ͖͑Δ A = :M×N (M ≦ N) ≃ :M×M :(M, N)×M ۙࣅ :R×R :(M, N)×R ͞Βʹ = = ɿର͕֯ ͷର֯ߦྻ X SVDΛ͏ͱ Y :M×R :R×N AΛখ͍͞ߦྻͷੵ ʹղͰ͖Δ
ςϯιϧωοτϫʔΫ܁ΓࠐΈͷϨγϐ ̍ɽղ ߦྻͱΈͳ͢ i l i i j l j j k SVD ʹΑΔۙࣅ l k k rank(A)=χ ʹۙࣅ : : ʢۙࣅʣ
ςϯιϧωοτϫʔΫ܁ΓࠐΈͷϨγϐ ̎ɽૈࢹԽ ଆͷΛॖ ݩͷςϯιϧ͕̎ͭ ৽͍͠ςϯιϧ̍ͭʹ ૈࢹԽ͞Εͨ :
ςϯιϧωοτϫʔΫ܁ΓࠐΈͷྔࢉܭ M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007) Z.-C. Gu, M. Levin and X.-G. Wen, Phys. Rev. B 78, 205116 (2008) ࣮O(χ5)·ͰݮΒͤΔ ʢͰޙٞ͠·͢ʣ ྔࢉܭɿ SVD= O(χ6) ॖ= O(χ6) ʢˎςϯιϧ͋ͨΓʣ ˎ1 TRG εςοϓͰ ςϯιϧ1/2ʹͳΔ ςϯιϧωοτϫʔΫॖ͕ςϯιϧʹରͯ͠ଟ߲ࣜͰࢉܭՄೳ
ςϯιϧωοτϫʔΫࢉܭͷૅجɿݻ༗
ݻ༗ͷม๏ ྫɿ࠷ΤωϧΪʔঢ়ଶ ίετؔɿ Fͷ࠷খ ͦͷ࣌ͷ ม๏ • • ݻ༗ͷۙࣅղΛಘΔํ๏ͷҰͭ Fͷ࠷খΛ੍͞ݶΕۭͨؒͷൣғͰ୳͢ ͷܗΛԾఆ͢Δʹࢼߦؔɺมಈؔ ྫɿฏۉۙࣅɺςϯιϧωοτϫʔΫঢ়ଶɺχϡʔϥϧωοτϫʔΫ, ... • ྑ͍ࢼߦؔˠߴਫ਼ͷ࠷ΤωϧΪʔ • ෳࡶͳࢼߦؔˠίετؔͷ૿͕ྔࢉܭେ
ςϯιϧωοτϫʔΫʹΑΔม๏ ม๏ͷࢼߦؔͱͯ͠ςϯιϧωοτϫʔΫΛ༻͍Δ ςϯιϧੵঢ়ଶʢTPS, PEPSʣ ྫɿ ߦྻੵঢ়ଶʢMPSʣ (b) (c) খ͍͞ςϯιϧʹղ ίετؔɿ FΛ࠷খʹ͢Δ Λ୳͢ʂ ϝϦοτɿ ݩͷϕΫτϧۭؒͷ͕࣍ݩaNͷ࣌ʹɺO(N)ͷίετͰࢉܭՄೳ ˎͨͩ͠ɺߦྻʢTNදݱՄೳͳʣૄߦྻ
Iterative optimization (F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93, 227205 (2004)) i ൪ͷςϯιϧʹணͨ͠࠷ॴہదԽ Minimize খ͍͞αΠζͷҰൠԽݻ༗ (࠷খݻ༗ͷݻ༗ঢ়ଶΛ୳͢ʣ i : ߦྻαΠζ= AiΛऔΓআ͘
Iterative optimization (F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93, 227205 (2004)) AiΛi =1 ͔Β N·Ͱsweepͯ͠update … i =N ͔Β 1·Ͱʹํٯsweep … ऩଋ͢Δ·Ͱ܁Γฦ͢
ߦྻͷίϯύΫτͳදݱ ʂ ͜ͷΞϧΰϦζϜɺߦྻࣗମ͕ςϯιϧωοτϫʔΫͰ ޮతʹද͖ͰݱΔ߹ʹͷΈ༗ޮʹ͑Δ ͜ͷߦྻྫ͑ Matrix Product Operator (MPO) ͱݺΕΔͰࣜܗ ද͢͜ͱ͕Ͱ͖Δʢ߹͕͋Δʣɻ = ྫɿ 1࣍ࢠྔݩS=1/2ϋΠθϯϕϧάܕͷϋϛϧτχΞϯ ͷMPOͰද͖ͰݱΔʢχNʹґଘ͠ͳ͍ʣ
ςϯιϧωοτϫʔΫࢉܭͷେنԽ
ςϯιϧωοτϫʔΫࢉܭͷ࣮ ςϯιϧ܁ΓࠐΈɺม๏ͳͲͷςϯιϧωοτϫʔΫࢉܭͷ࣮ தɾখنͷࢉܭɺطଘͷϥΠϒϥϦͳͲͰ؆୯ʹ࣮Ͱ͖Δ ྫɿ • • python + numpy, scipy Julia MATLAB ػցֶशϑϨʔϜϫʔΫ • FortranͰʢେม͚ͩͲʣͰ͖Δ • • େنͰࢉܭɺࢄϝϞϦʹΑΔฒྻԽ͕ෆՄආ cf. TRGͷࢉܭίετ~O(χ6), PEPSͩͱO(χ9)~O(χ12) 2ͭͷΞϓϩʔν • ΞϧΰϦζϜʹಛԽͨ͠ฒྻ࣮Λߦ͏ • ൚༻తͳฒྻϥΠϒϥϦΛ༻͍Δ ྫɿmptensor (https://github.com/smorita/mptensor) ੑݚͷా͞Μ͕։ൃ ˎલऀͷํ͕ੑೳ͕ߴ͘ͳΓ͍͕͢ɺଟ͘ͷTNࢉܭʢͱͯʣෳࡶͰ͋Γɺ ൚༻తͳϥΠϒϥϦͷํ͕࣮ίετ͕େ෯ʹ͍
ςϯιϧωοτϫʔΫࢉܭͷಛ • ςϯιϧωοτϫʔΫͷجຊతͳࢉܭߦྻͷઢܗʹͳΔ • ߦྻʹมޙͨ͠ܗɺطଘͷߦྻ༻ϥΠϒϥϦ͕͑Δ • • • BLAS, LAPACK, ScaLAPACK, .... ςϯιϧͱߦྻͷ૬ޓมɺ"transpose"͕ԿݱΕΔ • ࢄϝϞϦฒྻԽͰɺ௨৴͕ଟൃੜ͢ΔՄೳੑ • ڞ༗ϝϞϦͰɺϝϞϦॻ͖͑ίετ͕͋Δ • ʢมͷͨΊͷindexࢉܭ߹ʹΑͬͯॏ͍ʣ ߦྻͷαΠζɺਖ਼ํߦྻΑΓ"ํܗͷߦྻ"͕ଟͰͯ͘Δ • ϝϞϦͱྔࢉܭͷόϥϯε͕ѱ͘ͳΓ͍͢ • ͕ޮࢉܭग़ʹ͍͘߹ଟ͍
ޮతͳTNࢉܭͷͨΊͷҙ ςϯιϧॖͷॱং ॖͷධՁॱংͰࢉܭίετ͕มΘΔͨΊɺॱࢉܭংͷ࠷దԽ͕ॏཁ • ؆୯ͳωοτϫʔΫͰ͋Εʢ׳Εͨʣਓ͕ؒ࠷దԽ͢Δ • NCONͳͲͷΞϧΰϦζϜɺϥΠϒϥϦΛͬͯ࠷దԽ͢Δ • ࠷ۙͷϥΠϒϥϦͩͱɺ࠷దԽͨ͠ॱংͰTNॖΛͬͯ͘ΕΔͷ͋Δ • pythonͷopt_einsum • ࠷దԽͷΞϧΰϦζϜʹҙ͕ඞཁʢਅ໘ʹΔͱ͍ʣ TransposeͷԆ ϓϩάϥϜͷ͋ΔߦͰςϯιϧͷindexΛฒͼସ͑ͯɺ ࣮ࡍͷͰࢉܭඞཁʹͳΔ·ͰɺϝϞϦ্ͷฒͼସ͑͠ͳ͍ ˎnumpyͳͲͷଟ͘ͷϥΠϒϥϦͰجຊతʹ࣮͞Ε͍ͯΔ ʢʣnumpyͷtransposeʢreshapeʣεϨουฒྻʹରԠ͍ͯ͠ͳ͍ͨΊɺ େن͕͜͜ͰࢉܭϘτϧωοΫʹͳΔ͜ͱ͕͋Δ →ࣗͰεϨουฒྻ൛ͷ࣮Λॻ͘ͳͲͯ͠ରԠ͢Δ
ޮతͳTNࢉܭͷͨΊͷ ૄߦྻͷಛҟղ TNͰࢉܭɺಛҟղΛʢେ෯ͳʣϥϯΫۙࣅʹ༻͍ΔͨΊɺ શಛҟΛٻΊΔඞཁ͕ͳ͍͜ͱ͕ଟ͍ Full SVD Ͱͳ͘ɺpartial SVD ʢtruncated SVD) Λ༻͍Δ (ີߦྻιϧόʔ) (ૄߦྻιϧόʔ) ྫɿTRGͰͷಛҟղ SVDʹΑΔۙࣅ i l j k rank(A)=χ ʹۙࣅ ີߦྻιϧόʔɿ (શಛҟΛٻΊΔʣ ૄߦྻιϧόʔɿ (্ҐχݸͷಛҟΛٻΊΔʣ
ޮతͳTNࢉܭͷͨΊͷ ૄߦྻͷಛҟղʢ͖ͭͮʣ ૄߦྻιϧόʔͰɺߦྻϕΫτϧੵ͕͖ͰࢉܭΕྑ͍ͨΊɺ ߦྻΛཅʹ࡞Δඞཁͳ͘ͳΔ ྫɿTRGͰͷಛҟղ SVDʹΑΔۙࣅ i l j k rank(A)=χ ʹۙࣅ ςϯιϧͷ ෦ߏɿ ͜ͷॖ ͜ͷॖ χݸͷಛҟ
ςϯιϧωοτϫʔΫࢉܭͷେنԽɿHOTRG ʢΞϧΰϦζϜʹಛԽͨ͠ฒྻԽͷྫʣ
ࢄϝϞϦฒྻԽͷྫɿ3D-HOTRG๏ʹಛԽ
HOTRG: SVDΛςϯιϧʹ֦ுͨ͠HOSVDʹΑΔTRG
Z. Y. Xie et al, Phys. Rev. B 86, 045139 (2012)
⌘
<latexit sha1_base64="6fFfiOA5K65pfNgux7h1VXJdczM=">AAACaXichVFNLwNBGH66vqq+Wi4NF7GpODWzJSEO0sTFkVZLQtPsrsGwX/ajSTX+gJOb4EQiIn6Giz/g4CeII4mLg7fbTYQG72Rmnnnmfd55ZkZzDOH5jD3FpI7Oru6eeG+ir39gcCiZGi57duDqvKTbhu2ua6rHDWHxki98g687LldNzeBr2v5ic3+txl1P2NaqX3d4xVR3LLEtdNUnqrzJDwJRqyZllmVhjLcDJQIyoli2kzfYxBZs6AhggsOCT9iACo/aBhQwOMRV0CDOJSTCfY4jJEgbUBanDJXYfRp3aLURsRatmzW9UK3TKQZ1l5TjyLBHdste2QO7Y8/s49dajbBG00udZq2l5U516DhdfP9XZdLsY/dL9adnH9uYC70K8u6ETPMWektfOzx9Lc4XMo1JdsVeyP8le2L3dAOr9qZfr/DCBRL0AcrP524H5VxWmc7mVmbk/EL0FXGMYQJT9N6zyGMJyyjRuXs4wRnOYy9SSkpLo61UKRZpRvAtJPkT06uMOA==</latexit>
ҙ࣍ݩͷཱํ֨ࢠʹద༻Մೳ
3࣍ݩͷ߹
ͷࢉܭίετ
ࢉܭͷϘτϧωοΫ
⌘
<latexit sha1_base64="6fFfiOA5K65pfNgux7h1VXJdczM=">AAACaXichVFNLwNBGH66vqq+Wi4NF7GpODWzJSEO0sTFkVZLQtPsrsGwX/ajSTX+gJOb4EQiIn6Giz/g4CeII4mLg7fbTYQG72Rmnnnmfd55ZkZzDOH5jD3FpI7Oru6eeG+ir39gcCiZGi57duDqvKTbhu2ua6rHDWHxki98g687LldNzeBr2v5ic3+txl1P2NaqX3d4xVR3LLEtdNUnqrzJDwJRqyZllmVhjLcDJQIyoli2kzfYxBZs6AhggsOCT9iACo/aBhQwOMRV0CDOJSTCfY4jJEgbUBanDJXYfRp3aLURsRatmzW9UK3TKQZ1l5TjyLBHdste2QO7Y8/s49dajbBG00udZq2l5U516DhdfP9XZdLsY/dL9adnH9uYC70K8u6ETPMWektfOzx9Lc4XMo1JdsVeyP8le2L3dAOr9qZfr/DCBRL0AcrP524H5VxWmc7mVmbk/EL0FXGMYQJT9N6zyGMJyyjRuXs4wRnOYy9SSkpLo61UKRZpRvAtJPkT06uMOA==</latexit>
ͷϝϞϦίετ
ࢄϝϞϦฒྻԽͷྫɿ3D-HOTRG๏ಛԽ ฒྻԽͷࢦʢஜେͷࢁԼɾᓎҪΒͷΞΠσΞΛվྑʣ z T. Yamashita and T. Sakurai, Comp. Phys. Comm. 278, 108423 (2022) • શ෦Ͱχ2ͷMPIϓϩηε • ֤ϓϩηε(z,z')ͷ֤indexʹରԠ͢ΔμΠΞάϥϜΛࢉܭ • ֤ϓϩηε(z,z')Λݻఆͨ͠ɺO(χ5)ͷςϯιϧΛϝϞϦʹอ࣋ • ࢉܭΛํΛม͑ͯ܁Γฦͨ͢Ίʹɺχ4ͷσʔλΛχ2ͷ૬खʹbroadcst • z' Broadcast͢Δσʔλχ4ʹݮΒͤΔ ͷࢉܭίετ /ϓϩηεͷࢉܭίετ ͷϝϞϦίετ /ϓϩηεͷϝϞϦίετ MPIฒྻԽ
HOTRG 1stepͷฒྻԽੑೳ ISSP sekirei • ࣮ߦ࣌ؒ༧௨ΓͷO(χ9)εέʔϦϯά • εϨουฒྻͷੑೳ֓Ͷग़͍ͯΔ ژ
ࢉܭཁૉͷॏΈ = 24 Sekirei NBLF@6 #DBTU@6 NBLF@5 K #DBTU@5 SFTIBQF@5 NBLF@6 & & & & & & & & & DIJ PNQ DIJ PNQ DIJ PNQ DIJ PNQ & #DBTU@6 NBLF@5 #DBTU@5 SFTIBQF@5 DIJ PNQ DIJ PNQ DIJ PNQ DIJ PNQ • make_U ʢHOSVDʹΑΔprojectorͷࢉܭʣmake_TʢॖʣʹൺͯແࢹͰ͖Δ • Bcast_Tʢσʔλͷbroadcastʣ࣮ߦ࣌ؒͷ 5 ~10 % ֓ͶຬͰ͖Δੑೳ
ςϯιϧωοτϫʔΫࢉܭͷେنԽɿTeNeS ʢ൚༻ϥΠϒϥϦΛ༻͍ͨฒྻԽͷྫɻհͷΈʣ
ࢄϝϞϦฒྻԽͷྫɿ2࣍ࢠྔݩଟମ TPS (Tensor Product State) (AKLT, T. Nishino, K. Okunishi, …) PEPS (Projected Entangled-Pair State) (F. Verstraete and J. Cirac, arXiv:cond-mat/0407066) ྫɿ2࣍ݩਖ਼ํ֨ࢠͷTPS 4+1 ֊ͷςϯιϧ͕ෑ͖٧ΊΒΕͨωοτϫʔΫ ࣗॴہ༝ɿs Virtualࣗ༝ɿi, j, k, l ֤ΠϯσοΫεͷ࣍ʹݩϘϯυ࣍ݩʢDʣ มಈؔͱͯ͠ͷਫ਼ʹؔ͢Δύϥϝλ ʢD→∞Ͱʹີݫʣ TPSΛมಈؔͱ͢Δม๏ • • ໘ੵଇΛຬͨͨ͢Ίɺ༗ݶDͰਫ਼ͷྑ͍ۙࣅ • ແܥݶɺ༗ݶͷDͰ͖ͰࢉܭΔɿiTPS ςϯιϧωοτϫʔΫͷΈΛԾఆͨ͠ɺόΠΞεͷগͳ͍มಈؔ • Ϙϯυ࣍ݩͷ૿େʹΑΓɺܥ౷తʹਫ਼ΛվળͰ͖Δ
iTPS๏ͷద༻ྫ ྫɿʢϞϯςΧϧϩ๏ͷͰ͖ͳ͍ʣϑϥετϨʔτ࣓ੑମ H. YAMAGUCHI et al. RE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09063-7 ϑϥετϨʔτਖ਼ํ֨ࢠܕ 5/9 0.4 3/9 Spin 1 0 0 1 site 1 0.1 3 B/J g. 1 Calculated magnetization process for the spin-1/2 KAFM with the earest-neighbor interactionD. J. Nakamura, The tensor network method with the R. Okuma, T. Okubo et al, rojected entangledNat. pair Commun. state (PEPS)10, is used. vertical and horizontal 1229The (2019). xes represent magnetization M divided by saturated magnetization Ms and 0 site 2 1.0 0.5 1.5 (c) 2.0 site 1 0.3 site 2 0.2 2 site 1 H 0.4 0.3 2 Magnon 1/9 0 (b) <Sz > M /MS 7/9 (a) Intensity M/Msat 1 1.0 J6 J1 0.9 site 1 0.8 J2 J5 0.7 J4 J3 site 2 0.6 0.5 0.4 0.3 H=0 0.2 0.1 0 0 0.5 0.5 (< Sx>2+<Sy>2+<Sz>2 )1/2 Χΰϝ֨ࢠϋΠθϯϕϧάܕͷ࣓Խۂઢ 0.2 site 2 0 0.5 1.0 1.5 0.1 H/|J1| 0 0.5 1.0 1.5 FIG. 4. The ground states under magnetic fields obtained from H. Yamaguchi, Y. Sasaki, T. Okubo, D = 6 iTPS calculation. (a) Normalized magnetization curve, (b) Phys. Rev. B 98, 094402 (2018). average local magnetization, (c) average local moment at T = 0 calculated using the tensor network method assuming the ratios of var P(1 den
Tensor Netwok Solver (TeNeS) Y. Motoyama, T. Okubo, et al., Comput. Phys. Commun. 279, 108437 (2022). https://github.com/issp-center-dev/TeNeS ແܥݶͷTPSʢiTPSʣΛ༻͍ͨม๏ʹΑΔجఈঢ়ଶࢉܭ ൃؒ࣌ڏల๏ʹΑΔςϯιϧͷ࠷దԽ MPI/OpenMPʹΑΔେنฒྻʹࢉܭରԠ mptensorʢాʣ ʹΑΔςϯιϧԋࢉͷฒྻԽ Χΰϝ֨ࢠܕͷ࣓Խۂઢ 1 D = 10 0.8 @sekirei 72node ~4࣌ؒऑ ೋ࣍ݩͷྔࢠεϐϯܥϘκϯ͕ܥ؆୯ʹࢉܭՄೳ 0.6 mVMCHPhiͱྨࣅͷinput le ඪ४తͳೋ࣍ʹࢠ֨ݩσϑΥϧτͰରԠ ݪཧతʹҙͷೋ࣍ʹࢠ֨ݩରԠՄೳ ։ൃνʔϜ • • • • • େٱอؽʢ౦େཧʣɿΞϧΰϦζϜ෦ͷ࣮ ా࢙ޛʢੑݚʣɿؔ࿈ϥΠϒϥϦɾπʔϧ࡞ ຊࢁ༟ҰʢੑݚʣɿϝΠϯϓϩάϥϜͷઃܭɾ࣮ 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 ٢ݟҰܚʢੑݚʣɿϢʔβʔςετɾαϯϓϧͷ࡞ɺϚωʔδϝϯτ Ճ౻ַੜʢੑݚʣɿϢʔβʔςετɾαϯϓϧͷ࡞ ʲੑߴݚԽϓϩδΣΫτʳ ౡًʢੑݚʣɿϓϩδΣΫτϦʔμʔ fi • 3-site unit cell
·ͱΊ • ςϯιϧωοτϫʔΫʢTNʣࢉܭՊֶͷ͍Ζ͍Ζͳ໘ʹݱΕΔ • • ࣗମ͕TNͰࣜܗද͞ݱΕΔɻۙࣅͱͯ͠TNݱ͕ࣜܗΕΔɻ TNͷجຊతͳࢉܭɺॖʢߦྻੵʣɺϥϯΫۙࣅʢSVDʣɺ͓Αͼɺݻ༗ ͰɺߦྻԋࢉϥΠϒϥϦ͕͖Ͱ༻׆Δ • • খɾதنͷࢉܭɺ൚༻తͳϥΠϒϥϦͰ؆୯ʹ࣮Ͱ͖Δ • • ॏཁͳԠ༻ྫɿςϯιϧ܁ΓࠐΈ܈ɺݻ༗ͷม๏ Transpose ॖॱংͳͲɺςϯιϧಠࣗͷ͋Δ େنʹࢉܭɺࢄϝϞϦͰͷฒྻԽ͕ඞཁʹͳΔ • ΞϧΰϦζϜʹಛԽͨ͠ฒྻԽɿHOTRGͳͲ • ൚༻ϥΠϒϥϦΛ༻͍ͨฒྻԽɿTeNeSͳͲ
ࢀߟจݙ • ຊޠͷจݙ • ʮςϯιϧωοτϫʔΫࣜܗͷਐలͱԠ༻ʯ༑ɺେٱอؽɺຊཧֶձࢽ Vol 72, No. 10, 2017 • ʮςϯιϧωοτϫʔΫʹΑΔใѹॖͱϑϥετϨʔτ࣓ੑମͷԠ༻ʯେٱอؽɺୈ63ճੑएख ՆͷֶߍςΩετɺੑ ڀݚVol. 7, No.2 (2018) • ʮςϯιϧωοτϫʔΫͷͱૅجԠ༻ɹ౷ܭཧɾྔࢠใɾػցֶशʯ༑ɺSGCϥΠϒϥϦɺ αΠΤϯεࣾ • • ཧՊֶ 20222݄߸ɹಛूʮςϯιϧωοτϫʔΫͷਐలʯ English • "A practical introduction to tensor networks: Matrix product states and projected entangled pair states", R. Orús, Annals. of Physics 349, 117 (2014). • "Tensor networks for complex quantum systems", R. Orús, Nature Review Physics 1, 538 (2019). • "Tensor Network Contractions", Shi-Ju Ran, Emanuele Tirrito, Cheng Peng, Xi Chen, Luca Tagliacozzo, Gang Su, Maciej Lewenstein, Lecture Note in Physics, vol. 964, Springer, (2020). (Open access: https://link.springer.com/book/10.1007%2F978-3-030-34489-4)