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2. Ugawa’s Model

- Proposed by Kei Ugawa, agraduate of IIC Lab
- TICC-GANI3] used as baseline
- Generate colored images that properly reflect meaning of objects

- Refer to feature maps from the segmentation module

~2023/11/25
Memory of Ekiden~



2. Ugawa’s Model
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3. Possibility and Motivation

- As part of the experiment, input the fake visible right image I/ to
segmentation model Model® trained by visible light images.

- Lack of coloring accuracy and could not classify accurately.
(Originally the goal of the model is to improve image quality.)

- If the output of the model works when we input it to a model

trained by visible light images, it means we can apply TIR
images to Publicly available trained large-scale models!
eXx) ResNet, BiT, CLIP...

- In short, we would like to covert TIR image while taking account
naturalness not only for human, but also for recognition model.




4. Approach and Proposal

— MFNet Dataset

- Natural images of parking and roads - Night and day
- 640x480 pixels total 1606 - Made in UnlverS|ty of Tokyo [4]
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4. Approach and Proposal
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5. Experiment Design

(

.

1 Run-Ugawa’'s-model-stored-on-the-server

[] Follow-up experiment under the same conditions as those of Ugawa’s
paper, and obtain values close to the results by ourselves.

[] (Implement the Ugawa’s model on our own)

[1 Input the infrared images Iof the MFNet dataset to the trained
Ugawa’s model ModelVand obtain a fake light image V

[0 InputV to the segmentation model Model” trained by visible light

images and compare classification accuracy with real visible light
version

= Confirm that the output SV with 7 input is less accurate than the
output SY with V input.

(1 Train ModelV" adding “classification accuracy at ¥ input” into loss
= Attempt to maintain “naturalness as seen by humans" and make it “work
well even when input to a model pretrained with visible light images

J




6. Conclusion

g Motivation :

Using output image V from Ugawa’s model as an input

for recognition models trained by visible light images
. W,

Approach ~\

- Add the gap between ground truthS and “segmentated V" §

(=unnaturalness for recognition model) to the loss function of the
discriminator

- Introducing MFNet, a dataset with visible light image, TIR image and
annotation aligned on the same scene

- Finally generalize to obgect detection tasks
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7. Topic

-
- Is the novelty of this research theme recognized?

- I'm in pain from the error resolution. Crying.
- How to manage experimental conditions?
- How to connect and recombine existing models?

- How to verify what the image recognition model is looking at
(Grad Cam?)

- How to explore repositories on GitHub?
- How to version control with GitHub? ...etc




Thank you for your attention!

®5¢55T Your feedback is welcome! 000
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Prospects and Ideas for Master’s Degree

r-[ Continue undergraduate research} N\

- Generalization to other tasks
=Use of object detection data contained in MFNet

- Lightweight Ugawa’s Model |
\_ J

https ://www.mi.t.u-tokyo.ac.jp/static/ projects/mil_multispectral/det_result.png

\
f‘[ Other themes related to colorJ N

- Evaluate the amount of semantic information that is lost when
converted to monochrome.

- Quantitatively evaluate how easy it is for colorblind people to see
the display of a package, etc.

- Implement a service that provides color schemes for slides
according to the input of feelings and themes using words.




Feedback Obtained

e

- Possibly more effective using diffusion models than GAN
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Supplementary Material-Ugawa’s Model Generator Loss Functions-
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