

Scalable MatMul-free Language Modeling Rui-Jie Zhu et al., University of California, Santa Cruz

Alfredo Solano, Matsuo Laboratory

ntip://deeplearning.jp/

- Introduction
- Method
- Experiments
- FPGA
- Conclusion

References:

- Paper: https://arxiv.org/pdf/2406.02528
- Code: <u>https://github.com/ridgerchu/matmulfreellm/tree/master</u>

Introduction

- Motivation
 - General matrix-matrix multiplication (GEMM) is a dominant operation in neural networks
 - It has O(N^3) time complexity in the worst case
 - twice the input results in eight times the cost
 - GPUs are designed for this
 - hardware lottery
 - Used in both training and inference
 - If GEMM use could be reduced / simplified, training and inference time should be reduced

Method

- To simplify GEMM:
 - replace with simpler operations
 - AdderNet replaces multiplication with addition in CNNs
 - use binary / ternary quantization
 - binary: w = { 0, 1 }
 - ternary: w = { -1, 0, 1 }
 - Binary activations in Spiking Neural Networks (SNN)
 - Binary / Ternary weights in Binary / Ternary Neural Networks (BNN / TNN)
 - BitNet showed it is possible to scale binarized transformers to 3B
 - Replace Linear with BitLinear
 - Keep standard attention
 - Q, K calculated dynamically
 - require custom CUDA kernels for optimization
 - When testing a ternary quantization of Bitnet attention layers, it failed to converge

Method (2)

- Replace linear layers BitLinear layers with ternary values
 - multiplication is replaced by addition and negation
- Replace weight matrix W values with w = { -1, 0, 1 }
 - GEMM is then conceptually similar to:
 - np.where(x==1) np.where(x==-1)
- Not efficient enough, use custom kernel
- Optimize memory access with fused root mean squared normalization (RMSNorm) and quantization of activations
 - reduce HMB I/O costs
 - memory size is already reduced by ternary values

$$\widetilde{\mathbf{Y}}_i = \sum_{j=1}^{a} x_j \widetilde{\mathbf{W}}_{ij} = \sum_{j:\widetilde{\mathbf{W}}_{ij}=1} x_j - \sum_{j:\widetilde{\mathbf{W}}_{ij}=-1} x_j, \quad \text{for } i = 1, 2, \dots, m$$

Method (3)

Algorithm 1 Fused RMSNorm and BitLinear Algorithm with Quantization

Define FORDWARDPASS(X, W, b, ϵ) $\mathbf{X} \in \mathbb{R}^{M \times N}, \mathbf{W} \in \mathbb{R}^{N \times K}, \mathbf{b} \in \mathbb{R}^{K}$ function forward_pass(X, W, b, ϵ) Load X, W, b, ϵ from HBM On Chip: $\widetilde{\mathbf{Y}}, \mu, \sigma^{2}, r \leftarrow \text{rms_norm_fwd}(\mathbf{X})$ On Chip: $\widetilde{\mathbf{W}} \leftarrow \text{weight_quant}(\mathbf{W})$ On Chip: $\mathbf{O} \leftarrow \widetilde{\mathbf{Y}} \circledast \widetilde{\mathbf{W}} + \mathbf{b}$ Store O, μ, σ^{2}, r to HBM return O, μ, σ^{2}, r

 $\begin{array}{l} \textbf{function rms_norm_fwd}(\mathbf{X}) \\ \mu, \sigma^2 \leftarrow \texttt{mean}(\mathbf{X}), \texttt{variance}(\mathbf{X}) \\ r \leftarrow \frac{1}{\sqrt{\sigma^2 + \epsilon}} \\ \widetilde{\mathbf{Y}} \leftarrow \texttt{activation_quant}(r(\mathbf{X} - \mu)) \\ \textbf{return } \widetilde{\mathbf{Y}}, \mu, \sigma^2, r \end{array}$

function activation_quant(**X**) $s \leftarrow \frac{127}{\max(|\mathbf{X}|)} \quad \triangleright \lfloor \cdot \rceil \mid$. means round then clamp $\widetilde{X} \leftarrow \lfloor s\mathbf{X} \rceil \mid_{[-128, 127]} \cdot \frac{1}{s}$ return \widetilde{X}

function weight_quant(W) $s \leftarrow \frac{1}{\text{mean}(|W|)}$ $\widetilde{W} \leftarrow \lfloor sX \rceil \mid_{[-1,1]} \cdot \frac{1}{s}$ return \widetilde{W} return O **Define** BACKWARDPASS(**X**, **W**, **b**, **O**, d**O**, μ , σ^2 , r) **X** $\in \mathbb{R}^{M \times N}$, **W** $\in \mathbb{R}^{N \times K}$, **b** $\in \mathbb{R}^K$ **O** $\in \mathbb{R}^{M \times K}$, d**O** $\in \mathbb{R}^{M \times K}$

function backward_pass(X, W, b, O, μ , σ^2 , r, dO) Load X, W, b, O, μ , σ^2 , r, dO from HBM On Chip: dY \leftarrow dO \times W^T On Chip: dX, $\tilde{Y} \leftarrow$ rms_norm_bwd(dY, X, μ , σ^2 , r) On Chip: dW \leftarrow dO^T $\times \tilde{Y}$ On Chip: db \leftarrow sum(dO) Store dX, dW, db to HBM return dX, dW, db

function rms_norm_bwd(d**Y**, **X**, μ , σ^2 , r) $\widetilde{\mathbf{Y}} \leftarrow \operatorname{activation_quant}(r(\mathbf{X} - \mu))$ $d\sigma^2 \leftarrow \operatorname{sum}(d\mathbf{Y} \times (\mathbf{X} - \mu) \times -0.5 \times r^3)$ $d\mu \leftarrow \operatorname{sum}(-rd\mathbf{Y}) + d\sigma^2 \times \operatorname{mean}(\mathbf{X} - \mu)$ $d\mathbf{X} \leftarrow rd\mathbf{Y} + 2d\sigma^2(\mathbf{X} - \mu)/N + d\mu/N$ return d**X**, $\widetilde{\mathbf{Y}}$

Method (4)

- Replace attention with other mechanism
- View the transformer as:
 - token mixer: sequence / temporal information: self-attention, mamba, etc.
 - channel mixer: embedding / spatial information: feed-forward, GLU, etc.
- For the token mixer:
 - ternarize Q, K matrices to get a ternary attention map
 - fails to converge
 - replace self-attention with a modified gated recurrent unit (GRU)
 - simpler RNN-based architecture
 - replaces GEMM with element-wise operations and accumulation

Method (5)

Standard GRU

$$\boldsymbol{r}_t = \sigma \left(\boldsymbol{x}_t \mathbf{W}_{xr} + \boldsymbol{h}_{t-1} \mathbf{W}_{hr} + \mathbf{b}_r \right) \in \mathbb{R}^{1 \times d}, \tag{1}$$

$$\boldsymbol{f}_{t} = \sigma \left(\boldsymbol{x}_{t} \mathbf{W}_{xf} + \boldsymbol{h}_{t-1} \mathbf{W}_{hf} + \mathbf{b}_{f} \right) \in \mathbb{R}^{1 \times d},$$
(2)

$$\boldsymbol{c}_{t} = \tanh\left(\boldsymbol{x}_{t} \mathbf{W}_{xc} + (\boldsymbol{r}_{t} \odot \boldsymbol{h}_{t-1}) \mathbf{W}_{cc} + \mathbf{b}_{c}\right) \in \mathbb{R}^{1 \times d}, \tag{3}$$

$$\boldsymbol{h}_{t} = \boldsymbol{f}_{t} \odot \boldsymbol{h}_{t-1} + (1 - \boldsymbol{f}_{t}) \odot \boldsymbol{c}_{t} \in \mathbb{R}^{1 \times d}, \qquad (4)$$

$$\boldsymbol{o}_t = \boldsymbol{h}_t \tag{5}$$

Method (6)

- MatMul-free GRU
 - remove hidden-state related weights (Wcc, Whr, Whf)
 - remove activation between hidden states (tanh)
 - enables parallel computation
 - add a data-dependent gate between hidden state and output
 - decouple candidate state from hidden state

Method (7)

MatMul-free GRU

$$\begin{aligned} \boldsymbol{f}_t &= \sigma \left(\boldsymbol{x}_t \circledast \mathbf{W}_f + \mathbf{b}_f \right) \in \mathbb{R}^{1 \times d}, \\ \boldsymbol{c}_t &= \tau \left(\boldsymbol{x}_t \circledast \mathbf{W}_c + \mathbf{b}_c \right) \in \mathbb{R}^{1 \times d}, \\ \boldsymbol{h}_t &= \boldsymbol{f}_t \odot \boldsymbol{h}_{t-1} + (1 - \boldsymbol{f}_t) \odot \boldsymbol{c}_t \in \mathbb{R}^{1 \times d}, \\ \boldsymbol{g}_t &= \sigma(\boldsymbol{x}_t \circledast \mathbf{W}_g + \mathbf{b}_g) \in \mathbb{R}^{1 \times d}, \\ \boldsymbol{o}_t' &= \boldsymbol{g}_t \odot \boldsymbol{h}_t \in \mathbb{R}^{1 \times d}, \\ \boldsymbol{o}_t &= \boldsymbol{o}_t' \circledast \mathbf{W}_o + \mathbf{b}_o \in \mathbb{R}^{1 \times d}. \end{aligned}$$

Method (8)

- For the channel mixer
 - use a gated linear unit (GLU), similar to latest LLMs like Llama, Mistral, etc.
 - uses only dense layers
 - make it use BitLinear layers

Experiments

- Training details
 - use a surrogate gradient to handle non-differentiable functions like sign, clip, etc.
 - via Straight-Through Estimator
 - larger learning rate than traditional transformers
 - small LRs may lead to no weight updates after clipping
 - learning rate scheduler
 - shows different learning dynamics
 - cosine scheduler
 - halve midway through

Experiments (2)

- Compare against advanced transformer architecture from Llama 2
 - named Transformer++ in the charts
 - MatMul-free
- Three model sizes: 370M, 1.3B, and 2.7B
- All models pre-trained on the SlimPajama dataset
 - 370M model trained on 15 billion tokens, and the 1.3B and 2.7B models trained on 100 billion
- x8 NVIDIA H100 GPUs
 - ~5 hours for the 370M model
 - ~84 hours for the 1.3B model
 - ~173 hours for the 2.7B model

Experiments (3)

Loss graph

Experiments (4)

- Loss curve initially better for MatMul-free
- Then is taken over by Transformer++
- Scaling projections seem to indicate a steeper descent
 - more efficient resource usage
 - projected to intersect at 10^23 flops (similar to Llama 3 8B)
 - but only 3 data points
- Downstream tasks
 - multiple benchmarks: ARC-Challenge, Hellaswag, Winogrande, etc.
 - zero-shot
 - results show competitive performance

Experiments (5)

Downstream tasks

Table 1: Zero-shot accuracy of MatMul-free LM and Transformer++ on benchmark datasets.

Models	Size	ARCe	ARCc	HS	OQ	PQ	WGe	Avg.
370M parameters with 15B training tokens, Layer=24, d=1024								
Transformer++	370M	45.0	24.0	34.3	29.2	64.0	49.9	41.1
MatMul-free RWKV-4	370M	44.7	22.8	31.6	27.8	63.0	50.3	40.0
Ours	370M	42.6	23.8	32.8	28.4	63.0	49.2	40.3
1.3B parameters with 100B training tokens, Layer=24, d=2048								
Transformer++	1.3B	54.1	27.1	49.3	32.4	70.3	54.9	48.0
MatMul-free RWKV-4	1.3B	52.4	25.6	45.1	31.0	68.2	50.5	45.5
Ours	1.3B	54.0	25.9	44.9	31.4	68.4	52.4	46.2
2.7B parameters with 100B training tokens, Layer=32, d=2560								
Transformer++	2.7B	59.7	27.4	54.2	34.4	72.5	56.2	50.7
Ours	2.7B	58.5	29.7	52.3	35.4	71.1	52.1	49.9

Experiments (6)

- Training efficiency
 - Vanilla BitLinear compared to Fused BitLinear
 - Fused operator benefits from larger batch sizes
 - faster speed: 25.6% speedup for the 1.3B
 - reduced memory: 61% reduction for the 1.3B
 - more samples are being processed in a time step
- Inference efficiency
 - MatMul-free LM compared to Transformer++
 - Lower memory usage and latency
 - 4.9 GB vs 48.5 GB for the 1.3B
 - 695 ms vs 3184 ms for the 1.3B

FPGA

- Field-programmable gate array
 - configurable integrated circuit (IC)
 - lower level than GPU, higher than ASIC (application specific)
- To test efficiency on hardware that supports ternary operators
- Programmed in Verilog
- Deployed on Intel Cloud

Verilog RTI

Figure 5: RTL implementation for running MatMul-free token generation

FPGA (3)

- Clock rate of 60Hz
- Around 13W
- Implemented single core, estimate the multi-core setting based on that
- 1.3B model projected at 42ms and 23.8 tokens/second
 - human reading speed
 - low power consumption

Conclusion

- MatMul-free models are feasible
- Performance can be comparable to standard transformers
 reduces memory usage and latency
- GPUs are optimized for GEMM though, custom hardware may be needed
- Code is available on GitHub:
 - <u>https://github.com/ridgerchu/matmulfreellm</u>
 - compatible with HuggingFace libraries
 - CUDA kernels implemented with Triton language
- Needs to be tested on larger-scale models (100B+ parameters)