
1

Scalable MatMul-free Language Modeling
Rui-Jie Zhu et al., University of California, Santa Cruz

Alfredo Solano, Matsuo Laboratory



Overview

• Introduction

• Method

• Experiments

• FPGA

• Conclusion

References:

– Paper: https://arxiv.org/pdf/2406.02528

– Code: https://github.com/ridgerchu/matmulfreellm/tree/master

2

https://arxiv.org/pdf/2406.02528
https://github.com/ridgerchu/matmulfreellm/tree/master


Introduction

• Motivation
– General matrix-matrix multiplication (GEMM) is a dominant operation in neural 

networks

– It has O(N^3) time complexity in the worst case
• twice the input results in eight times the cost

– GPUs are designed for this
• hardware lottery

– Used in both training and inference

– If GEMM use could be reduced / simplified, training and inference time should 

be reduced

3



Method

• To simplify GEMM:
– replace with simpler operations

• AdderNet replaces multiplication with addition in CNNs

– use binary / ternary quantization
• binary: w = { 0, 1 }

• ternary: w = { -1, 0, 1 }

• Binary activations in Spiking Neural Networks (SNN)

• Binary / Ternary weights in Binary / Ternary Neural Networks (BNN / TNN)

– BitNet showed it is possible to scale binarized transformers to 3B
• Replace Linear with BitLinear

• Keep standard attention
– Q, K calculated dynamically

– require custom CUDA kernels for optimization

– When testing a ternary quantization of Bitnet attention layers, it failed to 

converge

4



Method (2)

• Replace linear layers BitLinear layers with ternary values
– multiplication is replaced by addition and negation

• Replace weight matrix W values with w = { -1, 0, 1 }
– GEMM is then conceptually similar to:

• np.where(x==1) - np.where(x==-1)
• Not efficient enough, use custom kernel

• Optimize memory access with fused root mean squared 

normalization (RMSNorm) and quantization of activations
– reduce HMB I/O costs

– memory size is already reduced by ternary values

5



Method (3)

6



Method (4)

• Replace attention with other mechanism

• View the transformer as:
– token mixer: sequence / temporal information: self-attention, mamba, etc.

– channel mixer: embedding / spatial information: feed-forward, GLU, etc.

• For the token mixer:
– ternarize Q, K matrices to get a ternary attention map

• fails to converge

– replace self-attention with a modified gated recurrent unit (GRU)
• simpler RNN-based architecture

• replaces GEMM with element-wise operations and accumulation

7



Method (5)

Standard GRU

8



Method (6)

• MatMul-free GRU
– remove hidden-state related weights (Wcc, Whr, Whf)

– remove activation between hidden states (tanh)

– enables parallel computation

– add a data-dependent gate between hidden state and output

– decouple candidate state from hidden state

9



Method (7)

MatMul-free GRU

10



Method (8)

• For the channel mixer
– use a gated linear unit (GLU), similar to latest LLMs like Llama, Mistral, etc.

• uses only dense layers

– make it use BitLinear layers

11



Experiments

• Training details
– use a surrogate gradient to handle non-differentiable functions like sign, clip, 

etc.
• via Straight-Through Estimator

– larger learning rate than traditional transformers
• small LRs may lead to no weight updates after clipping

– learning rate scheduler
• shows different learning dynamics

• cosine scheduler

• halve midway through

12



Experiments (2)

• Compare against advanced transformer architecture from Llama 2
– named Transformer++ in the charts

– MatMul-free

• Three model sizes: 370M, 1.3B, and 2.7B

• All models pre-trained on the SlimPajama dataset
– 370M model trained on 15 billion tokens, and the 1.3B and 2.7B models 

trained on 100 billion

• x8 NVIDIA H100 GPUs
– ~5 hours for the 370M model

– ~84 hours for the 1.3B model

– ~173 hours for the 2.7B model

13



Experiments (3)

Loss graph

14



Experiments (4)

• Loss curve initially better for MatMul-free

• Then is taken over by Transformer++

• Scaling projections seem to indicate a steeper descent
– more efficient resource usage

– projected to intersect at 10^23 flops (similar to Llama 3 8B)
• but only 3 data points

• Downstream tasks
– multiple benchmarks: ARC-Challenge, Hellaswag, Winogrande, etc.

– zero-shot

– results show competitive performance

15



Experiments (5)

Downstream tasks

16



Experiments (6)

• Training efficiency
– Vanilla BitLinear compared to Fused BitLinear

– Fused operator benefits from larger batch sizes
• faster speed: 25.6% speedup for the 1.3B

• reduced memory: 61% reduction for the 1.3B

• more samples are being processed in a time step

• Inference efficiency
– MatMul-free LM compared to Transformer++

– Lower memory usage and latency
• 4.9 GB vs 48.5 GB for the 1.3B

• 695 ms vs 3184 ms for the 1.3B

17



FPGA

• Field-programmable gate array
– configurable integrated circuit (IC)

– lower level than GPU, higher than ASIC (application specific)

• To test efficiency on hardware that supports ternary operators

• Programmed in Verilog

• Deployed on Intel Cloud

18



FPGA (2)

Verilog RTL

19



FPGA (3)

• Clock rate of 60Hz

• Around 13W

• Implemented single core, estimate the multi-core setting based on 

that

• 1.3B model projected at 42ms and 23.8 tokens/second
– human reading speed

– low power consumption

20



Conclusion

• MatMul-free models are feasible

• Performance can be comparable to standard transformers
– reduces memory usage and latency

• GPUs are optimized for GEMM though, custom hardware may be 

needed

• Code is available on GitHub:
– https://github.com/ridgerchu/matmulfreellm

– compatible with HuggingFace libraries

– CUDA kernels implemented with Triton language

• Needs to be tested on larger-scale models (100B+ parameters)

21

https://github.com/ridgerchu/matmulfreellm

	Slide 1
	Slide 2: Overview
	Slide 3: Introduction
	Slide 4: Method
	Slide 5: Method (2)
	Slide 6: Method (3)
	Slide 7: Method (4)
	Slide 8: Method (5)
	Slide 9: Method (6)
	Slide 10: Method (7)
	Slide 11: Method (8)
	Slide 12: Experiments
	Slide 13: Experiments (2)
	Slide 14: Experiments (3)
	Slide 15: Experiments (4)
	Slide 16: Experiments (5)
	Slide 17: Experiments (6)
	Slide 18: FPGA
	Slide 19: FPGA (2)
	Slide 20: FPGA (3)
	Slide 21: Conclusion

